کتابخانه مرکزی دانشگاه صنعتی شریف
    • [نمايش بزرگتر]
    • [نمايش کوچکتر]
  • صفحه 
     از  0
  • [صفحه قبل]
  • [صفحه بعد]
  • [نمایش تمام صفحه]
  • [بستن]
 
Radio system design for telecommunications
Freeman, Roger L.

اطلاعات کتابشناختی

Radio system design for telecommunications
Author :   Freeman, Roger L.
Publisher :   IEEE,
Pub. Year  :   2007
Subjects :   Radio relay systems -- Design and construction.
Call Number :   ‭TK 6553 .F7254 2007

جستجو در محتوا

ترتيب

فهرست مطالب

  • Radio System Design for Telecommunications (4)
    • CONTENTS (10)
    • Preface (26)
      • ACKNOWLEDGMENTS (27)
    • Chapter 1 Radio Propagation (30)
      • 1.1 Introduction (30)
      • 1.2 Loss in Free Space (31)
      • 1.3 Atmospheric Effects on Propagation (33)
        • 1.3.1 Introduction (33)
        • 1.3.2 Refractive Effects on Curvature of Ray Beam (33)
        • 1.3.3 Refractivity Gradients (37)
      • 1.4 Diffraction Effects—The Fresnel Zone Problem (43)
      • 1.5 Ground Reflection (47)
      • 1.6 Fading (48)
        • 1.6.1 Introduction (48)
        • 1.6.2 Multipath Fading (48)
        • 1.6.3 Power Fading (49)
        • 1.6.4 K-Factor Fading (51)
        • 1.6.5 Surface Duct Fading on Over-Water Paths (52)
      • 1.7 From Another Perspective—A Discussion of Fading (54)
        • 1.7.1 Comparison of Some Common Fading Types (54)
        • 1.7.2 Blackout Fading (57)
      • 1.8 Fade Depth and Fade Duration (60)
      • 1.9 Penalty for Not Meeting Obstacle Clearance Criteria (61)
      • 1.10 Attenuation Through Vegetation (62)
    • Chapter 2 Line-of-Sight Microwave Radiolinks (66)
      • 2.1 Objective and Scope (66)
      • 2.2 Initial Planning and Site Selection (67)
        • 2.2.1 Requirements and Requirements Analyses (68)
        • 2.2.2 Route Layout and Site Selection (69)
      • 2.3 Path Profiles (72)
        • 2.3.1 Determiniation of Median Value for K-Factor (75)
      • 2.4 Reflection Point (77)
      • 2.5 Site Survey (80)
        • 2.5.1 Introduction (80)
        • 2.5.2 Information Listing (80)
        • 2.5.3 Notes on Site Visit (82)
      • 2.6 Path Analysis (83)
        • 2.6.1 Objective and Scope (83)
        • 2.6.2 Unfaded Signal Level at the Receiver (84)
        • 2.6.3 Receiver Thermal Noise Threshold (87)
        • 2.6.4 Calculation of IF Bandwidth and Peak Frequency Deviation (90)
        • 2.6.5 Pre-emphasis/De-emphasis (93)
        • 2.6.6 Calculation of Median Carrier-to-Noise Ratio (Unfaded) (96)
        • 2.6.7 Calculation of Antenna Gain (98)
      • 2.7 Fading, Estimation of Fade Margin, and Mitigation of Fading Effects (99)
        • 2.7.1 Discussion of LOS Microwave Fading (99)
        • 2.7.2 Calculating Fade Margin (100)
        • 2.7.3 Notes on Path Fading Range Estimates (110)
        • 2.7.4 Diversity as a Means to Mitigate Fading (111)
      • 2.8 Analysis of Noise on a FM Radiolink (116)
        • 2.8.1 Introduction (116)
        • 2.8.2 Sources of Noise in a Radiolink (118)
        • 2.8.3 FM Improvement Threshold (119)
        • 2.8.4 Noise in a Derived Voice Channel (120)
        • 2.8.5 Noise Power Ratio (NPR) (124)
        • 2.8.6 Antenna Feeder Distortion (132)
        • 2.8.7 Total Noise in the Voice Channel (136)
        • 2.8.8 Signal-to-Noise Ratio for TV Video (136)
      • 2.9 Path Analysis Worksheet and Example (137)
        • 2.9.1 Introduction (137)
        • 2.9.2 Sample Worksheet (137)
      • 2.10 Frequency Assignment, Compatibility, and Frequency Plan (142)
        • 2.10.1 Introduction (142)
        • 2.10.2 Frequency Planning—Channel Arrangement (142)
        • 2.10.3 Some Typical ITU-R Channel Arrangements (148)
    • Chapter 3 Digital Line-of-Sight Microwave Radiolinks (162)
      • 3.1 Introduction (162)
        • 3.1.1 Energy per Bit per Noise Density Ratio, E(b)/N(0) (163)
      • 3.2 Regulatory Issues (164)
      • 3.3 Modulation Techniques, Spectral Efficiency, and Bandwidth (167)
        • 3.3.1 Introduction (167)
        • 3.3.2 Bit Packing (167)
        • 3.3.3 Spectral Efficiency (170)
        • 3.3.4 Power Amplifier Distortion (172)
      • 3.4 Comparison of Several Types of Modulation (173)
        • 3.4.1 Objective (173)
        • 3.4.2 Definitions and Notation (173)
        • 3.4.3 Modulation Format Comparison (174)
        • 3.4.4 Notes on Implementation and BER Performance (175)
      • 3.5 Some System Impairments Peculiar to Digital Operation (179)
        • 3.5.1 Mitigation Techniques for Multipath Fading (180)
        • 3.5.2 ITU-R Guidelines on Combating Propagation Effects (182)
      • 3.6 Performance Requirements and Objectives for Digital Radiolinks (184)
        • 3.6.1 Introduction (184)
        • 3.6.2 Five Definitions (184)
        • 3.6.3 Hypothetical Reference Digital Path (HRDP) for Radio-Relay Systems with a Capacity Above the Second Hierarchical Level (184)
        • 3.6.4 Error Performance Objectives for Real Digital Radiolinks Forming Part of a High-Grade Circuit in an ISDN Network (185)
        • 3.6.5 Error Performance Objectives of a 27,500-km Hypothetical Reference Path (188)
        • 3.6.6 Jitter and Wander (189)
        • 3.6.7 Error Performance from a Telecordia Perspective (190)
      • 3.7 Application of High-Level M-QAM to High-Capacity SDH/SONET Formats (190)
      • 3.8 Considerations of Fading on LOS Digital Microwave Systems (191)
        • 3.8.1 Introduction (191)
        • 3.8.2 Other Views of Calculations of Fade Margins on Digital LOS Microwave (192)
        • 3.8.3 Multipath Fading Calculations Based on TIA TSB 10-F (193)
        • 3.8.4 Simple Calculations of Path Dispersiveness (198)
      • 3.9 Path Analyses or Link Budgets on Digital LOS Microwave Paths (199)
    • Chapter 4 Forward Error Correction and Advanced Digital Waveforms (204)
      • 4.1 Objective (204)
      • 4.2 Forward Error Correction (204)
        • 4.2.1 Background and Objective (204)
        • 4.2.2 Basic Forward Error Correction (206)
        • 4.2.3 FEC Codes (209)
        • 4.2.4 Binary Convolutional Codes (216)
        • 4.2.5 Channel Performance of Uncoded and Coded Systems (225)
        • 4.2.6 Coding with Bursty Errors (230)
      • 4.3 Advanced Signal Waveforms (236)
        • 4.3.1 Block-Coded Modulation (BCM) (236)
        • 4.3.2 Trellis-Coded Modulation (TCM) (239)
        • 4.3.3 Multilevel-Coded Modulation (MCLM) (240)
        • 4.3.4 Partial Response with a Soft Decoder (242)
    • Chapter 5 Over-the-Horizon Radiolinks (248)
      • 5.1 Objectives and Scope (248)
      • 5.2 Application (248)
      • 5.3 Introduction to Tropospheric Scatter Propagation (249)
      • 5.4 Tropospheric Scatter Link Design (252)
        • 5.4.1 Site Selection, Route Selection, Path Profile, and Field Survey (252)
        • 5.4.2 Link Performance Calculations (253)
      • 5.5 Path Calculation/Link Analysis (313)
        • 5.5.1 Introduction (313)
        • 5.5.2 Path Intermodulation Noise—Analog Systems (313)
        • 5.5.3 Sample Link Analysis (318)
      • 5.6 Threshold Extension (320)
      • 5.7 Digital Transhorizon Radiolinks (321)
        • 5.7.1 Introduction (321)
        • 5.7.2 Digital Link Analysis (321)
        • 5.7.3 Dispersion (323)
        • 5.7.4 Some Methods of Overcoming the Effects of Dispersion (324)
        • 5.7.5 Some ITU-R Perspectives on Transhorizon Radio Systems (326)
      • 5.8 Troposcatter Frequency Bands and the Sharing with Space Radio-Communication Systems (329)
        • 5.8.1 Frequency Bands Shared with Space Services (Space-to-Earth) (329)
    • Chapter 6 Basic Principles of Satellite Communications (334)
      • 6.1 Introduction, Scope, and Applications (334)
      • 6.2 Satellite Systems—An Introduction (335)
        • 6.2.1 Satellite Orbits (335)
        • 6.2.2 Elevation Angle (337)
        • 6.2.3 Determination of Range and Elevation Angle of a Geostationary Satellite (338)
      • 6.3 Introduction to Link Analysis or Link Budget (340)
        • 6.3.1 Rationale (340)
        • 6.3.2 Frequency Bands Available for Satellite Communications (340)
        • 6.3.3 Free-Space Loss or Spreading Loss (344)
        • 6.3.4 Isotropic Receive Level—Simplified Model (344)
        • 6.3.5 Limitation of Flux Density on Earth’s Surface (345)
        • 6.3.6 Thermal Noise Aspects of Low-Noise Systems (347)
        • 6.3.7 Calculation of C/N(0) (350)
        • 6.3.8 Gain-to-Noise Temperature Ratio, G/T (352)
        • 6.3.9 Calculation of C/N(0) Using the Link Budget (361)
        • 6.3.10 Calculation S/N (366)
      • 6.4 Access Techniques (372)
        • 6.4.1 Introduction (372)
        • 6.4.2 Frequency Division Multiple Access (FMDA) (374)
        • 6.4.3 Brief Overview of Time Division Multiple Access (TDMA) (381)
      • 6.5 INTELSAT Systems (383)
        • 6.5.1 Introduction (383)
        • 6.5.2 INTELSAT Type A Standard Earth Stations (383)
        • 6.5.3 INTELSAT Standard B Earth Stations (389)
        • 6.5.4 INTELSAT Standard C Earth Stations (390)
        • 6.5.5 INTELSAT Standard D Earth Stations (390)
        • 6.5.6 INTELSAT Standard E Earth Stations (392)
        • 6.5.7 INTELSAT Standard F Earth Stations (393)
        • 6.5.8 Basic INTELSAT Space Segment Data Common to All Families of Standard Earth Stations (393)
        • 6.5.9 Television Operation Over INTELSAT (393)
      • 6.6 Domestic and Regional Satellite Systems (401)
        • 6.6.1 Introduction (401)
        • 6.6.2 Rationale (402)
        • 6.6.3 Approaches to Cost Reduction (402)
        • 6.6.4 A Typical Satellite Series that Can Provide Transponder Space for Enterprise Networks (403)
    • Chapter 7 Digital Communications by Satellite (410)
      • 7.1 Introduction (410)
      • 7.2 Digital Operations of a Bent-Pipe Satellite System (411)
        • 7.2.1 General (411)
        • 7.2.2 Digital FMDA Operation (411)
        • 7.2.3 TDMA Operation on a Bent-Pipe Satellite (423)
      • 7.3 Digital Speech Interpolation (432)
        • 7.3.1 Freeze-Out and Clipping (433)
        • 7.3.2 TASI-Based DSI (434)
        • 7.3.3 Speech Predictive Encoding DSI (435)
      • 7.4 INTELSAT TDMA/DSI System (436)
        • 7.4.1 Overview (436)
        • 7.4.2 Frame, Multiframe, and Burst Format (438)
        • 7.4.3 Acquisition and Synchronization (444)
        • 7.4.4 Transponder Hopping (444)
        • 7.4.5 Digital Speech Interpolation Interface (444)
      • 7.5 Processing Satellites (445)
        • 7.5.1 Primitive Processing Satellite (446)
        • 7.5.2 Switched-Satellite TDMA (SS/TDMA) (447)
        • 7.5.3 IF Switching (450)
        • 7.5.4 Intersatellite Links (451)
      • 7.6 Performance Considerations for Digital Satellite Communications (454)
        • 7.6.1 Hypothetical Reference Digital Path for Systems Using Digital Transmissio5 in the Fixed-Satellite Service (454)
        • 7.6.2 BERs at the Output of a HRDP for Systems Using PCM Telephony (455)
        • 7.6.3 Allowable Error Performance for a HRDP in the Fixed-Satellite Service Operating Below 15 GHz When Forming Part of an International Connection in an ISDN (455)
        • 7.6.4 Allowable Error Performance for a HRDP Operating at or Above the Primary Rate (The Impact of ITU-T Rec. 5.826) (457)
      • 7.7 Link Budgets for Digital Satellites (460)
        • 7.7.1 Commentary (460)
    • Chapter 8 Very Small Aperture Terminals (468)
      • 8.1 Definitions of VSAT (468)
      • 8.2 VSAT Network Applications (468)
        • 8.2.1 One-Way Applications (469)
        • 8.2.2 Two-Way Applications (470)
      • 8.3 Technical Description of VSAT Networks and Their Operations (471)
        • 8.3.1 Introduction (471)
        • 8.3.2 A Link Budget for a Typical VSAT Operation at Ku-Band (471)
        • 8.3.3 Summary of VSAT RF Characteristics (476)
      • 8.4 Access Techniques (476)
        • 8.4.1 Random Access (478)
        • 8.4.2 Demand-Assigned Multiple Access (479)
        • 8.4.3 Fixed-Assigned FDMA (480)
        • 8.4.4 Summary (481)
        • 8.4.5 Outbound TDM Channel (481)
      • 8.5 A Modest VSAT Network in Support of Short Transaction Communications (482)
      • 8.6 Interference Issues with VSATs (486)
      • 8.7 Excess Attenuation Due to Rainfall (489)
    • Chapter 9 Radio System Design Above 10 GHz (492)
      • 9.1 The Problem—An Introduction (492)
      • 9.2 The General Propagation Problem Above 10 GHz (493)
      • 9.3 Excess Attenuation Due to Rainfall (496)
        • 9.3.1 Calculation of Excess Attenuation Due to Rainfall for LOS Microwave Paths (498)
      • 9.4 Calculation of Excess Attenuation Due to Rainfall for Satellite Paths (508)
        • 9.4.1 Calculation Method (508)
        • 9.4.2 Rainfall Fade Rates, Depths, and Durations (511)
        • 9.4.3 Site or Path Diversity (512)
      • 9.5 Excess Attenuation Due to Atmospheric Gases on Satellite Links (513)
        • 9.5.1 Example Calculation of Clear Air Attenuation—Hypothetical Location (516)
        • 9.5.2 Conversion of Relative Humidity to Water Vapor Density (517)
      • 9.6 Attenuation Due to Clouds and Fog (519)
      • 9.7 Calculation of Sky Noise Temperature as a Function of Attenuation (521)
      • 9.8 The Sun as a Noise Generator (522)
      • 9.9 Propagation Effects with a Low Elevation Angle (524)
      • 9.10 Depolarization on Satellite Links (524)
      • 9.11 Scintillation Fading on Satellite Links (524)
      • 9.12 Trade-off Between Free-Space Loss and Antenna Gain (525)
    • Chapter 10 Mobile Communications: Cellular Radio and Personal Communication Services (532)
      • 10.1 Introduction (532)
        • 10.1.1 Background (532)
        • 10.1.2 Scope and Objective (533)
      • 10.2 Some Basic Concepts of Cellular Radio (533)
        • 10.2.1 N-AMPS Increases Channel Capacity Threefold (537)
      • 10.3 Radio Propagation in the Mobile Environment (538)
        • 10.3.1 The Propagation Problem (538)
        • 10.3.2 Several Propagation Models (538)
        • 10.3.3 Microcell Prediction Model According to Lee (541)
      • 10.4 Impairments—Fading in the Mobile Environment (544)
        • 10.4.1 Introduction (544)
        • 10.4.2 Classification of Fading (545)
        • 10.4.3 Diversity—A Technique to Mitigate the Effects of Fading and Dispersion (547)
        • 10.4.4 Cellular Radio Path Calculations (550)
      • 10.5 The Cellular Radio Bandwidth Dilemma (550)
        • 10.5.1 Background and Objectives (550)
        • 10.5.2 Bit Rate Reduction of the Digital Voice Channel (551)
      • 10.6 Network Access Techniques (551)
        • 10.6.1 Introduction (551)
        • 10.6.2 Frequency Division Multiple Access (FDMA) (552)
        • 10.6.3 Time Division Multiple Access (TDMA) (553)
        • 10.6.4 Code Division Multiple Access (CDMA) (556)
      • 10.7 Frequency Reuse (564)
      • 10.8 Paging Systems (567)
        • 10.8.1 What Are Paging Systems? (567)
        • 10.8.2 Radio-Frequency Bands for Pagers (567)
        • 10.8.3 Radio Propagation into Buildings (567)
        • 10.8.4 Techniques Available for Multiple Transmitter Zones (567)
        • 10.8.5 Paging Receivers (568)
        • 10.8.6 System Capacity (569)
        • 10.8.7 Codes and Formats for Paging Systems (569)
        • 10.8.8 Considerations for Selecting Codes and Formats (569)
      • 10.9 Personal Communication Systems (570)
        • 10.9.1 Defining Personal Communications (570)
        • 10.9.2 Narrowband Microcell Propagation at PCS Distances (571)
      • 10.10 Cordless Telephone Technology (575)
        • 10.10.1 Background (575)
        • 10.10.2 North American Cordless Telephones (575)
        • 10.10.3 European Cordless Telephones (575)
      • 10.11 Future Public Land Mobile Telecommunication System (FPLMTS) (578)
        • 10.11.1 Introduction (578)
        • 10.11.2 Traffic Estimates (578)
          • 10.11.2.1 Nonvoice Traffic (580)
          • 10.11.2.2 PCS Outdoors (580)
          • 10.11.2.3 PCS Indoors (580)
        • 10.11.3 Estimates of Spectrum Requirements (581)
        • 10.11.4 Sharing Considerations (582)
        • 10.11.5 Sharing Between FPLMTS and Other Services (583)
      • 10.12 Mobile Satellite Communications (583)
        • 10.12.1 Background and Scope (583)
        • 10.12.2 Overview of Satellite Mobile Services (584)
          • 10.12.2.1 Existing Systems (584)
        • 10.12.3 System Trends (584)
    • Chapter 11 Wireless LANs (590)
      • 11.1 Definition (590)
      • 11.2 IEEE802.11 and its Variants (591)
      • 11.3 Wireless LANs and Other Wireless Technologies (593)
        • 11.3.1 Benefits of a Centralized WLAN Architecture (594)
      • 11.4 Wireless LAN Frequencies (595)
      • 11.5 Wireless LAN Structures (595)
      • 11.6 WLAN Capabilities (596)
        • 11.6.1 Distance Capabilities (596)
        • 11.6.2 The WLAN Signal (596)
          • 11.6.2.1 Direct Sequence Spread Spectrum (DSSS) (596)
          • 11.6.2.2 Frequency Hop Spread-Spectrum (FHSS) (597)
      • 11.7 IEEE 802.11 Layers (597)
      • 11.8 Software-Defined Radio and Cognitive Radio (599)
        • 11.8.1 Software-Defined Radio Description (599)
        • 11.8.2 Cognitive Radio (599)
    • Chapter 12 High-Frequency (HF) Transmission Links (602)
      • 12.1 General (602)
      • 12.2 Applications of HF Radio Communication (602)
      • 12.3 Typical HF Link Operation, Conceptual Introduction (604)
      • 12.4 Basic HF Propagation (604)
        • 12.4.1 Introduction (604)
        • 12.4.2 Skywave Transmission (606)
      • 12.5 Choice of Optimum Operating Frequency (609)
        • 12.5.1 Frequency Management (616)
      • 12.6 Propagation Modes (627)
        • 12.6.1 Basic Groundwave Propagation (627)
        • 12.6.2 Skywave Propagation (628)
        • 12.6.3 Near-Vertical Incidence (NVI) Propagation (631)
        • 12.6.4 Reciprocal Reception (633)
      • 12.7 HF Communication Impairments (634)
        • 12.7.1 Introduction (634)
        • 12.7.2 Fading (634)
        • 12.7.3 Effects of Impairments at the HF Receiver (637)
      • 12.8 Mitigation of Propagation-Related Impairments (640)
      • 12.9 HF Impairments—Noise in the Receiving System (642)
        • 12.9.1 Introduction (642)
        • 12.9.2 Interference (642)
        • 12.9.3 Atmospheric Noise (645)
        • 12.9.4 Man-Made Noise (651)
        • 12.9.5 Receiver Thermal Noise (654)
      • 12.10 Notes on HF Link Transmission Loss Calculations (654)
        • 12.10.1 Introduction (654)
        • 12.10.2 Transmission Loss Components (654)
        • 12.10.3 A Simplified Example of Transmission Loss Calculation (663)
        • 12.10.4 Groundwave Transmission Loss (664)
      • 12.11 Link Analysis for Equipment Dimensioning (669)
        • 12.11.1 Introduction (669)
        • 12.11.2 Methodology (670)
      • 12.12 Some Advanced Modulation and Coding Schemes (672)
        • 12.12.1 Two Approaches (672)
        • 12.12.2 Parallel Tone Operation (672)
        • 12.12.3 Serial Tone Operation (674)
      • 12.13 Improved Lincompex for HF Radio Telephone Circuits (679)
    • Chapter 13 Meteor Burst Communication (686)
      • 13.1 Introduction (686)
      • 13.2 Meteor Trails (687)
        • 13.2.1 General (687)
        • 13.2.2 Distribution of Meteors (689)
        • 13.2.3 Underdense Trails (689)
        • 13.2.4 Overdense Trails (690)
      • 13.3 Typical Meteor Burst Terminals and Their Operation (692)
      • 13.4 System Design Parameters (694)
        • 13.4.1 Introduction (694)
        • 13.4.2 Operating Frequency (695)
        • 13.4.3 Data Rate (695)
        • 13.4.4 Transmit Power (695)
        • 13.4.5 Antenna Gain (695)
        • 13.4.6 Receiver Threshold (695)
      • 13.5 Prediction of MBC Link Performance (696)
        • 13.5.1 Introduction (696)
        • 13.5.2 Receiver Threshold (696)
        • 13.5.3 Positions of Regions of Optimum Scatter (697)
        • 13.5.4 Effective Length, Average Height, and Radius of Meteor Trails (699)
        • 13.5.5 Ambipolar Diffusion Constant (700)
        • 13.5.6 Received Power (700)
        • 13.5.7 Meteor Rate (703)
        • 13.5.8 Burst Time Duration (704)
        • 13.5.9 Burst Rate Correction Factor (707)
        • 13.5.10 Waiting Time Probability (708)
      • 13.6 Design/Performance Prediction Procedure (712)
      • 13.7 Notes on MBC Transmission Loss (712)
      • 13.8 MBC Circuit Optimization (714)
      • 13.9 Meteor Burst Networks (715)
      • 13.10 Privacy and the Meteor Burst Footprint (715)
    • Chapter 14 Interference Issues in Radio Communications (720)
      • 14.1 Rationale (720)
      • 14.2 Spurious Response Interference Windows at a Receiver (721)
      • 14.3 Typical Interference Control for Line-of-Sight Microwave and Satellite Communication Facilities (722)
        • 14.3.1 Introduction (722)
        • 14.3.2 Conceptual Approach to Interference Determination (723)
        • 14.3.3 Applicable FCC Rule for Minimum Antenna Radiation Suppression (728)
        • 14.3.4 Coordination Contours (731)
      • 14.4 Victim Digital Systems (733)
      • 14.5 Definition of C/I Ratio (735)
        • 14.5.1 Example C/I Calculations Based on Ref. 6 (735)
        • 14.5.2 Example of Digital Interferer into Victim Digital System (739)
      • 14.6 Obstructed Interfering Paths (741)
      • 14.7 ITU-R Approach to Digital Link Performance Under Interference Conditions (743)
        • 14.7.1 Gaussian Interference Environment—M-QAM Systems (743)
    • Chapter 15 Radio Terminal Design Considerations (750)
      • 15.1 Objective (750)
        • 15.1.1 The Generic Terminal (750)
      • 15.2 Analog Line-of-Sight Radiolink Terminals and Repeaters (751)
        • 15.2.1 Basic Analog LOS Microwave Terminal (751)
      • 15.3 Digital LOS Microwave Terminals (754)
        • 15.3.1 Gray or Reflected Binary Codes (757)
        • 15.3.2 The Antenna Subsystem for LOS Microwave Installations (758)
        • 15.3.3 Analog Radiolink Repeaters (769)
        • 15.3.4 Diversity Combiners (770)
        • 15.3.5 Hot-Standby Operation (778)
        • 15.3.6 Pilot Tones (782)
        • 15.3.7 Service Channels (784)
        • 15.3.8 Alarm and Supervisory Subsystems (785)
        • 15.3.9 Antenna Towers—General (789)
        • 15.3.10 Waveguide Pressurization (794)
      • 15.4 Tropospheric Scatter and Diffraction Installations: Analog and Digital (795)
        • 15.4.1 Antennas, Transmission Lines, Duplexer, and Related Transmission Line Devices (797)
        • 15.4.2 Modulator–Exciter and Power Amplifier (798)
        • 15.4.3 FM Receiver Group (799)
        • 15.4.4 Diversity Operation (799)
        • 15.4.5 Isolation (800)
      • 15.5 Satellite Communications, Terminal Segment (801)
        • 15.5.1 Functional Operation of a "Standard" Earth Station (801)
        • 15.5.2 The Antenna Subsystem (806)
        • 15.5.3 Very Small Aperture Terminals (VSATs) (816)
      • 15.6 Cellular and PCS Installations: Analog and Digital (817)
        • 15.6.1 Introduction (817)
        • 15.6.2 Base Station or Cell Design Concepts (818)
        • 15.6.3 The MTSO or MSC (820)
        • 15.6.4 Personal Communication Services (822)
      • 15.7 HF Terminals and Antennas (823)
        • 15.7.1 Introduction (823)
        • 15.7.2 Composition of Basic HF Equipment (824)
        • 15.7.3 Basic Single-Sideband SSB Operation (825)
        • 15.7.4 SSB System Considerations (826)
        • 15.7.5 Linear Power Amplifiers (827)
        • 15.7.6 HF Configuration Notes (829)
        • 15.7.7 HF Antennas (829)
      • 15.8 Meteor Burst Installations (837)
        • 15.8.1 Yagi Antennas (838)
    • Appendix 1 Availability of a Line-of-Sight Microwave Link (844)
      • A1.1 Introduction (844)
      • A1.2 Contributors to Unavailability (845)
      • A1.3 Availability Requirements (846)
      • A1.4 Calculation of Availability of LOS Radiolinks in Tandem (846)
        • A1.4.1 Discussion of Partition of Unavailability (846)
        • A1.4.2 Propagation Availability (848)
      • A1.5 Improving Availability (848)
      • A1.6 Application to Other Radio Media (849)
    • Appendix 2 Reference Fields and Theoretical References; Converting RF Field Strength to Power (850)
      • A2.1 Reference Fields—Theoretical References (850)
      • A2.2 Conversion of Radio-Frequency (RF) Field Strength to Power (852)
    • Appendix 3 Glossary of Acronyms and Abbreviations (854)
    • Index (866)
Loading...