برای استفاده از امکانات سیستم، گزینه جاوا اسکریپت در مرورگر شما باید فعال باشد
صفحه
از
0
Radio system design for telecommunications
Freeman, Roger L.
اطلاعات کتابشناختی
Radio system design for telecommunications
Author :
Freeman, Roger L.
Publisher :
IEEE,
Pub. Year :
2007
Subjects :
Radio relay systems -- Design and construction.
Call Number :
TK 6553 .F7254 2007
جستجو در محتوا
ترتيب
شماره صفحه
امتياز صفحه
فهرست مطالب
Radio System Design for Telecommunications
(4)
CONTENTS
(10)
Preface
(26)
ACKNOWLEDGMENTS
(27)
Chapter 1 Radio Propagation
(30)
1.1 Introduction
(30)
1.2 Loss in Free Space
(31)
1.3 Atmospheric Effects on Propagation
(33)
1.3.1 Introduction
(33)
1.3.2 Refractive Effects on Curvature of Ray Beam
(33)
1.3.3 Refractivity Gradients
(37)
1.4 Diffraction Effects—The Fresnel Zone Problem
(43)
1.5 Ground Reflection
(47)
1.6 Fading
(48)
1.6.1 Introduction
(48)
1.6.2 Multipath Fading
(48)
1.6.3 Power Fading
(49)
1.6.4 K-Factor Fading
(51)
1.6.5 Surface Duct Fading on Over-Water Paths
(52)
1.7 From Another Perspective—A Discussion of Fading
(54)
1.7.1 Comparison of Some Common Fading Types
(54)
1.7.2 Blackout Fading
(57)
1.8 Fade Depth and Fade Duration
(60)
1.9 Penalty for Not Meeting Obstacle Clearance Criteria
(61)
1.10 Attenuation Through Vegetation
(62)
Chapter 2 Line-of-Sight Microwave Radiolinks
(66)
2.1 Objective and Scope
(66)
2.2 Initial Planning and Site Selection
(67)
2.2.1 Requirements and Requirements Analyses
(68)
2.2.2 Route Layout and Site Selection
(69)
2.3 Path Profiles
(72)
2.3.1 Determiniation of Median Value for K-Factor
(75)
2.4 Reflection Point
(77)
2.5 Site Survey
(80)
2.5.1 Introduction
(80)
2.5.2 Information Listing
(80)
2.5.3 Notes on Site Visit
(82)
2.6 Path Analysis
(83)
2.6.1 Objective and Scope
(83)
2.6.2 Unfaded Signal Level at the Receiver
(84)
2.6.3 Receiver Thermal Noise Threshold
(87)
2.6.4 Calculation of IF Bandwidth and Peak Frequency Deviation
(90)
2.6.5 Pre-emphasis/De-emphasis
(93)
2.6.6 Calculation of Median Carrier-to-Noise Ratio (Unfaded)
(96)
2.6.7 Calculation of Antenna Gain
(98)
2.7 Fading, Estimation of Fade Margin, and Mitigation of Fading Effects
(99)
2.7.1 Discussion of LOS Microwave Fading
(99)
2.7.2 Calculating Fade Margin
(100)
2.7.3 Notes on Path Fading Range Estimates
(110)
2.7.4 Diversity as a Means to Mitigate Fading
(111)
2.8 Analysis of Noise on a FM Radiolink
(116)
2.8.1 Introduction
(116)
2.8.2 Sources of Noise in a Radiolink
(118)
2.8.3 FM Improvement Threshold
(119)
2.8.4 Noise in a Derived Voice Channel
(120)
2.8.5 Noise Power Ratio (NPR)
(124)
2.8.6 Antenna Feeder Distortion
(132)
2.8.7 Total Noise in the Voice Channel
(136)
2.8.8 Signal-to-Noise Ratio for TV Video
(136)
2.9 Path Analysis Worksheet and Example
(137)
2.9.1 Introduction
(137)
2.9.2 Sample Worksheet
(137)
2.10 Frequency Assignment, Compatibility, and Frequency Plan
(142)
2.10.1 Introduction
(142)
2.10.2 Frequency Planning—Channel Arrangement
(142)
2.10.3 Some Typical ITU-R Channel Arrangements
(148)
Chapter 3 Digital Line-of-Sight Microwave Radiolinks
(162)
3.1 Introduction
(162)
3.1.1 Energy per Bit per Noise Density Ratio, E(b)/N(0)
(163)
3.2 Regulatory Issues
(164)
3.3 Modulation Techniques, Spectral Efficiency, and Bandwidth
(167)
3.3.1 Introduction
(167)
3.3.2 Bit Packing
(167)
3.3.3 Spectral Efficiency
(170)
3.3.4 Power Amplifier Distortion
(172)
3.4 Comparison of Several Types of Modulation
(173)
3.4.1 Objective
(173)
3.4.2 Definitions and Notation
(173)
3.4.3 Modulation Format Comparison
(174)
3.4.4 Notes on Implementation and BER Performance
(175)
3.5 Some System Impairments Peculiar to Digital Operation
(179)
3.5.1 Mitigation Techniques for Multipath Fading
(180)
3.5.2 ITU-R Guidelines on Combating Propagation Effects
(182)
3.6 Performance Requirements and Objectives for Digital Radiolinks
(184)
3.6.1 Introduction
(184)
3.6.2 Five Definitions
(184)
3.6.3 Hypothetical Reference Digital Path (HRDP) for Radio-Relay Systems with a Capacity Above the Second Hierarchical Level
(184)
3.6.4 Error Performance Objectives for Real Digital Radiolinks Forming Part of a High-Grade Circuit in an ISDN Network
(185)
3.6.5 Error Performance Objectives of a 27,500-km Hypothetical Reference Path
(188)
3.6.6 Jitter and Wander
(189)
3.6.7 Error Performance from a Telecordia Perspective
(190)
3.7 Application of High-Level M-QAM to High-Capacity SDH/SONET Formats
(190)
3.8 Considerations of Fading on LOS Digital Microwave Systems
(191)
3.8.1 Introduction
(191)
3.8.2 Other Views of Calculations of Fade Margins on Digital LOS Microwave
(192)
3.8.3 Multipath Fading Calculations Based on TIA TSB 10-F
(193)
3.8.4 Simple Calculations of Path Dispersiveness
(198)
3.9 Path Analyses or Link Budgets on Digital LOS Microwave Paths
(199)
Chapter 4 Forward Error Correction and Advanced Digital Waveforms
(204)
4.1 Objective
(204)
4.2 Forward Error Correction
(204)
4.2.1 Background and Objective
(204)
4.2.2 Basic Forward Error Correction
(206)
4.2.3 FEC Codes
(209)
4.2.4 Binary Convolutional Codes
(216)
4.2.5 Channel Performance of Uncoded and Coded Systems
(225)
4.2.6 Coding with Bursty Errors
(230)
4.3 Advanced Signal Waveforms
(236)
4.3.1 Block-Coded Modulation (BCM)
(236)
4.3.2 Trellis-Coded Modulation (TCM)
(239)
4.3.3 Multilevel-Coded Modulation (MCLM)
(240)
4.3.4 Partial Response with a Soft Decoder
(242)
Chapter 5 Over-the-Horizon Radiolinks
(248)
5.1 Objectives and Scope
(248)
5.2 Application
(248)
5.3 Introduction to Tropospheric Scatter Propagation
(249)
5.4 Tropospheric Scatter Link Design
(252)
5.4.1 Site Selection, Route Selection, Path Profile, and Field Survey
(252)
5.4.2 Link Performance Calculations
(253)
5.5 Path Calculation/Link Analysis
(313)
5.5.1 Introduction
(313)
5.5.2 Path Intermodulation Noise—Analog Systems
(313)
5.5.3 Sample Link Analysis
(318)
5.6 Threshold Extension
(320)
5.7 Digital Transhorizon Radiolinks
(321)
5.7.1 Introduction
(321)
5.7.2 Digital Link Analysis
(321)
5.7.3 Dispersion
(323)
5.7.4 Some Methods of Overcoming the Effects of Dispersion
(324)
5.7.5 Some ITU-R Perspectives on Transhorizon Radio Systems
(326)
5.8 Troposcatter Frequency Bands and the Sharing with Space Radio-Communication Systems
(329)
5.8.1 Frequency Bands Shared with Space Services (Space-to-Earth)
(329)
Chapter 6 Basic Principles of Satellite Communications
(334)
6.1 Introduction, Scope, and Applications
(334)
6.2 Satellite Systems—An Introduction
(335)
6.2.1 Satellite Orbits
(335)
6.2.2 Elevation Angle
(337)
6.2.3 Determination of Range and Elevation Angle of a Geostationary Satellite
(338)
6.3 Introduction to Link Analysis or Link Budget
(340)
6.3.1 Rationale
(340)
6.3.2 Frequency Bands Available for Satellite Communications
(340)
6.3.3 Free-Space Loss or Spreading Loss
(344)
6.3.4 Isotropic Receive Level—Simplified Model
(344)
6.3.5 Limitation of Flux Density on Earth’s Surface
(345)
6.3.6 Thermal Noise Aspects of Low-Noise Systems
(347)
6.3.7 Calculation of C/N(0)
(350)
6.3.8 Gain-to-Noise Temperature Ratio, G/T
(352)
6.3.9 Calculation of C/N(0) Using the Link Budget
(361)
6.3.10 Calculation S/N
(366)
6.4 Access Techniques
(372)
6.4.1 Introduction
(372)
6.4.2 Frequency Division Multiple Access (FMDA)
(374)
6.4.3 Brief Overview of Time Division Multiple Access (TDMA)
(381)
6.5 INTELSAT Systems
(383)
6.5.1 Introduction
(383)
6.5.2 INTELSAT Type A Standard Earth Stations
(383)
6.5.3 INTELSAT Standard B Earth Stations
(389)
6.5.4 INTELSAT Standard C Earth Stations
(390)
6.5.5 INTELSAT Standard D Earth Stations
(390)
6.5.6 INTELSAT Standard E Earth Stations
(392)
6.5.7 INTELSAT Standard F Earth Stations
(393)
6.5.8 Basic INTELSAT Space Segment Data Common to All Families of Standard Earth Stations
(393)
6.5.9 Television Operation Over INTELSAT
(393)
6.6 Domestic and Regional Satellite Systems
(401)
6.6.1 Introduction
(401)
6.6.2 Rationale
(402)
6.6.3 Approaches to Cost Reduction
(402)
6.6.4 A Typical Satellite Series that Can Provide Transponder Space for Enterprise Networks
(403)
Chapter 7 Digital Communications by Satellite
(410)
7.1 Introduction
(410)
7.2 Digital Operations of a Bent-Pipe Satellite System
(411)
7.2.1 General
(411)
7.2.2 Digital FMDA Operation
(411)
7.2.3 TDMA Operation on a Bent-Pipe Satellite
(423)
7.3 Digital Speech Interpolation
(432)
7.3.1 Freeze-Out and Clipping
(433)
7.3.2 TASI-Based DSI
(434)
7.3.3 Speech Predictive Encoding DSI
(435)
7.4 INTELSAT TDMA/DSI System
(436)
7.4.1 Overview
(436)
7.4.2 Frame, Multiframe, and Burst Format
(438)
7.4.3 Acquisition and Synchronization
(444)
7.4.4 Transponder Hopping
(444)
7.4.5 Digital Speech Interpolation Interface
(444)
7.5 Processing Satellites
(445)
7.5.1 Primitive Processing Satellite
(446)
7.5.2 Switched-Satellite TDMA (SS/TDMA)
(447)
7.5.3 IF Switching
(450)
7.5.4 Intersatellite Links
(451)
7.6 Performance Considerations for Digital Satellite Communications
(454)
7.6.1 Hypothetical Reference Digital Path for Systems Using Digital Transmissio5 in the Fixed-Satellite Service
(454)
7.6.2 BERs at the Output of a HRDP for Systems Using PCM Telephony
(455)
7.6.3 Allowable Error Performance for a HRDP in the Fixed-Satellite Service Operating Below 15 GHz When Forming Part of an International Connection in an ISDN
(455)
7.6.4 Allowable Error Performance for a HRDP Operating at or Above the Primary Rate (The Impact of ITU-T Rec. 5.826)
(457)
7.7 Link Budgets for Digital Satellites
(460)
7.7.1 Commentary
(460)
Chapter 8 Very Small Aperture Terminals
(468)
8.1 Definitions of VSAT
(468)
8.2 VSAT Network Applications
(468)
8.2.1 One-Way Applications
(469)
8.2.2 Two-Way Applications
(470)
8.3 Technical Description of VSAT Networks and Their Operations
(471)
8.3.1 Introduction
(471)
8.3.2 A Link Budget for a Typical VSAT Operation at Ku-Band
(471)
8.3.3 Summary of VSAT RF Characteristics
(476)
8.4 Access Techniques
(476)
8.4.1 Random Access
(478)
8.4.2 Demand-Assigned Multiple Access
(479)
8.4.3 Fixed-Assigned FDMA
(480)
8.4.4 Summary
(481)
8.4.5 Outbound TDM Channel
(481)
8.5 A Modest VSAT Network in Support of Short Transaction Communications
(482)
8.6 Interference Issues with VSATs
(486)
8.7 Excess Attenuation Due to Rainfall
(489)
Chapter 9 Radio System Design Above 10 GHz
(492)
9.1 The Problem—An Introduction
(492)
9.2 The General Propagation Problem Above 10 GHz
(493)
9.3 Excess Attenuation Due to Rainfall
(496)
9.3.1 Calculation of Excess Attenuation Due to Rainfall for LOS Microwave Paths
(498)
9.4 Calculation of Excess Attenuation Due to Rainfall for Satellite Paths
(508)
9.4.1 Calculation Method
(508)
9.4.2 Rainfall Fade Rates, Depths, and Durations
(511)
9.4.3 Site or Path Diversity
(512)
9.5 Excess Attenuation Due to Atmospheric Gases on Satellite Links
(513)
9.5.1 Example Calculation of Clear Air Attenuation—Hypothetical Location
(516)
9.5.2 Conversion of Relative Humidity to Water Vapor Density
(517)
9.6 Attenuation Due to Clouds and Fog
(519)
9.7 Calculation of Sky Noise Temperature as a Function of Attenuation
(521)
9.8 The Sun as a Noise Generator
(522)
9.9 Propagation Effects with a Low Elevation Angle
(524)
9.10 Depolarization on Satellite Links
(524)
9.11 Scintillation Fading on Satellite Links
(524)
9.12 Trade-off Between Free-Space Loss and Antenna Gain
(525)
Chapter 10 Mobile Communications: Cellular Radio and Personal Communication Services
(532)
10.1 Introduction
(532)
10.1.1 Background
(532)
10.1.2 Scope and Objective
(533)
10.2 Some Basic Concepts of Cellular Radio
(533)
10.2.1 N-AMPS Increases Channel Capacity Threefold
(537)
10.3 Radio Propagation in the Mobile Environment
(538)
10.3.1 The Propagation Problem
(538)
10.3.2 Several Propagation Models
(538)
10.3.3 Microcell Prediction Model According to Lee
(541)
10.4 Impairments—Fading in the Mobile Environment
(544)
10.4.1 Introduction
(544)
10.4.2 Classification of Fading
(545)
10.4.3 Diversity—A Technique to Mitigate the Effects of Fading and Dispersion
(547)
10.4.4 Cellular Radio Path Calculations
(550)
10.5 The Cellular Radio Bandwidth Dilemma
(550)
10.5.1 Background and Objectives
(550)
10.5.2 Bit Rate Reduction of the Digital Voice Channel
(551)
10.6 Network Access Techniques
(551)
10.6.1 Introduction
(551)
10.6.2 Frequency Division Multiple Access (FDMA)
(552)
10.6.3 Time Division Multiple Access (TDMA)
(553)
10.6.4 Code Division Multiple Access (CDMA)
(556)
10.7 Frequency Reuse
(564)
10.8 Paging Systems
(567)
10.8.1 What Are Paging Systems?
(567)
10.8.2 Radio-Frequency Bands for Pagers
(567)
10.8.3 Radio Propagation into Buildings
(567)
10.8.4 Techniques Available for Multiple Transmitter Zones
(567)
10.8.5 Paging Receivers
(568)
10.8.6 System Capacity
(569)
10.8.7 Codes and Formats for Paging Systems
(569)
10.8.8 Considerations for Selecting Codes and Formats
(569)
10.9 Personal Communication Systems
(570)
10.9.1 Defining Personal Communications
(570)
10.9.2 Narrowband Microcell Propagation at PCS Distances
(571)
10.10 Cordless Telephone Technology
(575)
10.10.1 Background
(575)
10.10.2 North American Cordless Telephones
(575)
10.10.3 European Cordless Telephones
(575)
10.11 Future Public Land Mobile Telecommunication System (FPLMTS)
(578)
10.11.1 Introduction
(578)
10.11.2 Traffic Estimates
(578)
10.11.2.1 Nonvoice Traffic
(580)
10.11.2.2 PCS Outdoors
(580)
10.11.2.3 PCS Indoors
(580)
10.11.3 Estimates of Spectrum Requirements
(581)
10.11.4 Sharing Considerations
(582)
10.11.5 Sharing Between FPLMTS and Other Services
(583)
10.12 Mobile Satellite Communications
(583)
10.12.1 Background and Scope
(583)
10.12.2 Overview of Satellite Mobile Services
(584)
10.12.2.1 Existing Systems
(584)
10.12.3 System Trends
(584)
Chapter 11 Wireless LANs
(590)
11.1 Definition
(590)
11.2 IEEE802.11 and its Variants
(591)
11.3 Wireless LANs and Other Wireless Technologies
(593)
11.3.1 Benefits of a Centralized WLAN Architecture
(594)
11.4 Wireless LAN Frequencies
(595)
11.5 Wireless LAN Structures
(595)
11.6 WLAN Capabilities
(596)
11.6.1 Distance Capabilities
(596)
11.6.2 The WLAN Signal
(596)
11.6.2.1 Direct Sequence Spread Spectrum (DSSS)
(596)
11.6.2.2 Frequency Hop Spread-Spectrum (FHSS)
(597)
11.7 IEEE 802.11 Layers
(597)
11.8 Software-Defined Radio and Cognitive Radio
(599)
11.8.1 Software-Defined Radio Description
(599)
11.8.2 Cognitive Radio
(599)
Chapter 12 High-Frequency (HF) Transmission Links
(602)
12.1 General
(602)
12.2 Applications of HF Radio Communication
(602)
12.3 Typical HF Link Operation, Conceptual Introduction
(604)
12.4 Basic HF Propagation
(604)
12.4.1 Introduction
(604)
12.4.2 Skywave Transmission
(606)
12.5 Choice of Optimum Operating Frequency
(609)
12.5.1 Frequency Management
(616)
12.6 Propagation Modes
(627)
12.6.1 Basic Groundwave Propagation
(627)
12.6.2 Skywave Propagation
(628)
12.6.3 Near-Vertical Incidence (NVI) Propagation
(631)
12.6.4 Reciprocal Reception
(633)
12.7 HF Communication Impairments
(634)
12.7.1 Introduction
(634)
12.7.2 Fading
(634)
12.7.3 Effects of Impairments at the HF Receiver
(637)
12.8 Mitigation of Propagation-Related Impairments
(640)
12.9 HF Impairments—Noise in the Receiving System
(642)
12.9.1 Introduction
(642)
12.9.2 Interference
(642)
12.9.3 Atmospheric Noise
(645)
12.9.4 Man-Made Noise
(651)
12.9.5 Receiver Thermal Noise
(654)
12.10 Notes on HF Link Transmission Loss Calculations
(654)
12.10.1 Introduction
(654)
12.10.2 Transmission Loss Components
(654)
12.10.3 A Simplified Example of Transmission Loss Calculation
(663)
12.10.4 Groundwave Transmission Loss
(664)
12.11 Link Analysis for Equipment Dimensioning
(669)
12.11.1 Introduction
(669)
12.11.2 Methodology
(670)
12.12 Some Advanced Modulation and Coding Schemes
(672)
12.12.1 Two Approaches
(672)
12.12.2 Parallel Tone Operation
(672)
12.12.3 Serial Tone Operation
(674)
12.13 Improved Lincompex for HF Radio Telephone Circuits
(679)
Chapter 13 Meteor Burst Communication
(686)
13.1 Introduction
(686)
13.2 Meteor Trails
(687)
13.2.1 General
(687)
13.2.2 Distribution of Meteors
(689)
13.2.3 Underdense Trails
(689)
13.2.4 Overdense Trails
(690)
13.3 Typical Meteor Burst Terminals and Their Operation
(692)
13.4 System Design Parameters
(694)
13.4.1 Introduction
(694)
13.4.2 Operating Frequency
(695)
13.4.3 Data Rate
(695)
13.4.4 Transmit Power
(695)
13.4.5 Antenna Gain
(695)
13.4.6 Receiver Threshold
(695)
13.5 Prediction of MBC Link Performance
(696)
13.5.1 Introduction
(696)
13.5.2 Receiver Threshold
(696)
13.5.3 Positions of Regions of Optimum Scatter
(697)
13.5.4 Effective Length, Average Height, and Radius of Meteor Trails
(699)
13.5.5 Ambipolar Diffusion Constant
(700)
13.5.6 Received Power
(700)
13.5.7 Meteor Rate
(703)
13.5.8 Burst Time Duration
(704)
13.5.9 Burst Rate Correction Factor
(707)
13.5.10 Waiting Time Probability
(708)
13.6 Design/Performance Prediction Procedure
(712)
13.7 Notes on MBC Transmission Loss
(712)
13.8 MBC Circuit Optimization
(714)
13.9 Meteor Burst Networks
(715)
13.10 Privacy and the Meteor Burst Footprint
(715)
Chapter 14 Interference Issues in Radio Communications
(720)
14.1 Rationale
(720)
14.2 Spurious Response Interference Windows at a Receiver
(721)
14.3 Typical Interference Control for Line-of-Sight Microwave and Satellite Communication Facilities
(722)
14.3.1 Introduction
(722)
14.3.2 Conceptual Approach to Interference Determination
(723)
14.3.3 Applicable FCC Rule for Minimum Antenna Radiation Suppression
(728)
14.3.4 Coordination Contours
(731)
14.4 Victim Digital Systems
(733)
14.5 Definition of C/I Ratio
(735)
14.5.1 Example C/I Calculations Based on Ref. 6
(735)
14.5.2 Example of Digital Interferer into Victim Digital System
(739)
14.6 Obstructed Interfering Paths
(741)
14.7 ITU-R Approach to Digital Link Performance Under Interference Conditions
(743)
14.7.1 Gaussian Interference Environment—M-QAM Systems
(743)
Chapter 15 Radio Terminal Design Considerations
(750)
15.1 Objective
(750)
15.1.1 The Generic Terminal
(750)
15.2 Analog Line-of-Sight Radiolink Terminals and Repeaters
(751)
15.2.1 Basic Analog LOS Microwave Terminal
(751)
15.3 Digital LOS Microwave Terminals
(754)
15.3.1 Gray or Reflected Binary Codes
(757)
15.3.2 The Antenna Subsystem for LOS Microwave Installations
(758)
15.3.3 Analog Radiolink Repeaters
(769)
15.3.4 Diversity Combiners
(770)
15.3.5 Hot-Standby Operation
(778)
15.3.6 Pilot Tones
(782)
15.3.7 Service Channels
(784)
15.3.8 Alarm and Supervisory Subsystems
(785)
15.3.9 Antenna Towers—General
(789)
15.3.10 Waveguide Pressurization
(794)
15.4 Tropospheric Scatter and Diffraction Installations: Analog and Digital
(795)
15.4.1 Antennas, Transmission Lines, Duplexer, and Related Transmission Line Devices
(797)
15.4.2 Modulator–Exciter and Power Amplifier
(798)
15.4.3 FM Receiver Group
(799)
15.4.4 Diversity Operation
(799)
15.4.5 Isolation
(800)
15.5 Satellite Communications, Terminal Segment
(801)
15.5.1 Functional Operation of a "Standard" Earth Station
(801)
15.5.2 The Antenna Subsystem
(806)
15.5.3 Very Small Aperture Terminals (VSATs)
(816)
15.6 Cellular and PCS Installations: Analog and Digital
(817)
15.6.1 Introduction
(817)
15.6.2 Base Station or Cell Design Concepts
(818)
15.6.3 The MTSO or MSC
(820)
15.6.4 Personal Communication Services
(822)
15.7 HF Terminals and Antennas
(823)
15.7.1 Introduction
(823)
15.7.2 Composition of Basic HF Equipment
(824)
15.7.3 Basic Single-Sideband SSB Operation
(825)
15.7.4 SSB System Considerations
(826)
15.7.5 Linear Power Amplifiers
(827)
15.7.6 HF Configuration Notes
(829)
15.7.7 HF Antennas
(829)
15.8 Meteor Burst Installations
(837)
15.8.1 Yagi Antennas
(838)
Appendix 1 Availability of a Line-of-Sight Microwave Link
(844)
A1.1 Introduction
(844)
A1.2 Contributors to Unavailability
(845)
A1.3 Availability Requirements
(846)
A1.4 Calculation of Availability of LOS Radiolinks in Tandem
(846)
A1.4.1 Discussion of Partition of Unavailability
(846)
A1.4.2 Propagation Availability
(848)
A1.5 Improving Availability
(848)
A1.6 Application to Other Radio Media
(849)
Appendix 2 Reference Fields and Theoretical References; Converting RF Field Strength to Power
(850)
A2.1 Reference Fields—Theoretical References
(850)
A2.2 Conversion of Radio-Frequency (RF) Field Strength to Power
(852)
Appendix 3 Glossary of Acronyms and Abbreviations
(854)
Index
(866)