کتابخانه مرکزی دانشگاه صنعتی شریف
    • [نمايش بزرگتر]
    • [نمايش کوچکتر]
  • صفحه 
     از  0
  • [صفحه قبل]
  • [صفحه بعد]
  • [نمایش تمام صفحه]
  • [بستن]
 
Structure and corrosion behavior of oxide layer with Zr compounds on AZ31 Mg alloy processed by two-step plasma electrolytic oxidation
Einkhah, F.

اطلاعات کتابشناختی

Structure and corrosion behavior of oxide layer with Zr compounds on AZ31 Mg alloy processed by two-step plasma electrolytic oxidation
Author :   Einkhah, F.
Publisher :  
Pub. Year  :   2014
Subjects :   Magnesium alloy. Plasma electrolytic oxidation. Zr compounds. Alkaline phosphate. ...
Call Number :  

جستجو در محتوا

ترتيب

فهرست مطالب

  • Cover Page (1)
  • Title: Biomaterials Fabrication and Processing HANDBOOK (4)
  • ISBN 0849379733 (5)
  • Contents (with page links) (6)
  • Preface (10)
  • Editors (12)
  • Contributors (14)
  • Part I: Tissue Engineering Scaffold Materials (18)
    • 1 Inorganic and Composite Bioactive Scaffolds for Bone Tissue Engineering (20)
      • 1.1 INTRODUCTION (21)
      • 1.2 DESIGN OF 3-D SCAFFOLDS (21)
      • 1.3 SCAFFOLD MATERIALS FOR BONE TISSUE ENGINEERING (23)
        • 1.3.1 BIOCERAMICS: CALCIUM PHOSPHATES (23)
        • 1.3.2 BIOCERAMICS: BIOACTIVE SILICATE GLASSES (25)
        • 1.3.3 BIOCERAMICS: GLASS-CERAMICS (27)
        • 1.3.4 NATURALLY OCCURRING BIOPOLYMERS (28)
        • 1.3.5 SYNTHETIC POLYMERS (29)
        • 1.3.6 BIOCOMPOSITES (33)
        • 1.3.7 SUMMARY (35)
      • 1.4 FABRICATION OF TISSUE-ENGINEERING SCAFFOLDS (36)
        • 1.4.1 FABRICATION OF INORGANIC SCAFFOLDS (36)
        • 1.4.2 FABRICATION OF COMPOSITE SCAFFOLDS (45)
      • 1.5 SURFACE FUNCTIONALIZATION (49)
        • 1.5.1 PROTEIN ADSORPTION (49)
        • 1.5.2 SILANE-MODIFIED SURFACES (SILANIZATION TECHNIQUE) (49)
        • 1.5.3 TOPOGRAPHY (ROUGHNESS) MODIFICATION (50)
        • 1.5.4 POLYMER COATINGS (50)
      • 1.6 CONCLUSIONS (50)
      • REFERENCES (51)
    • 2 Design, Fabrication, and Characterization of Scaffolds via Solid Free-Form Fabrication Techniques (62)
      • 2.1 INTRODUCTION (62)
        • 2.1.1 SCAFFOLD-BASED TISSUE ENGINEERING (63)
      • 2.2 SCAFFOLD DESIGN (67)
        • 2.2.1 INTRODUCTION (67)
        • 2.2.2 MORPHOLOGY/ARCHITECTURE (68)
      • 2.3 SOLID FREE-FORM FABRICATION (70)
        • 2.3.1 INTRODUCTION (70)
        • 2.3.2 THREE-DIMENSIONAL PRINTING (73)
        • 2.3.3 SYSTEMS BASED ON EXTRUSION/DIRECT WRITING (74)
      • 2.4 FUTURE DIRECTIONS (79)
        • 2.4.1 INTRODUCTION (79)
        • 2.4.2 CELL/ORGAN PRINTING (80)
        • 2.4.3 ROBOT-ASSISTED CONSTRUCT FABRICATION (82)
      • 2.5 CONCLUSIONS (82)
      • REFERENCES (83)
    • 3 Control and Monitoring of Scaffold Architecture for Tissue Engineering (86)
      • 3.1 INTRODUCTION (87)
      • 3.2 REQUISITES FOR ENGINEERING TISSUES (87)
      • 3.3 SCAFFOLDS FOR TISSUE ENGINEERING (88)
        • 3.3.1 MATERIALS (88)
        • 3.3.2 PROCESSING TECHNIQUES TO CONTROL THE SCAFFOLDS’ ARCHITECTURE (89)
      • 3.4 MONITORING SCAFFOLDS’ ARCHITECTURE (90)
        • 3.4.1 MICROSCOPY (91)
        • 3.4.2 MICROCOMPUTED TOMOGRAPHY (93)
        • 3.4.3 OPTICAL COHERENCE TOMOGRAPHY (94)
      • 3.5 CONTROL AND MONITORING OF SCAFFOLD ARCHITECTURE FOR TISSUE ENGINEERING—A CASE STUDY (95)
        • 3.5.1 DEVELOPMENT OF NEW TECHNIQUES TO TAILOR SCAFFOLD ARCHITECTURE (95)
        • 3.5.2 MONITORING THE SCAFFOLDS’ ARCHITECTURE (96)
        • 3.5.3 DISCUSSION (100)
      • 3.6 FINAL REMARKS (105)
      • ACKNOWLEDGMENTS (105)
      • REFERENCES (105)
    • 4 Rapid Prototyping Methods for Tissue Engineering Applications (112)
      • 4.1 INTRODUCTION (112)
      • 4.2 MICROFABRICATION OF THREE-DIMENSIONAL STRUCTURES: RAPID PROTOTYPING (113)
      • 4.3 MATERIALS USED FOR TISSUE ENGINEERING SCAFFOLDS (115)
      • 4.4 RESOLUTION AND RESOLUTION/TIME OF MANUFACTURE RATIO AND GEOMETRY (116)
      • 4.5 FLUID-BASED RP MICROFABRICATION (117)
        • 4.5.1 PRESSURE-ASSISTED MICROSYRINGE SYSTEM (118)
        • 4.5.2 FUSED DEPOSITION MODELING (119)
        • 4.5.3 ORGAN PRINTING (120)
      • 4.6 PRINTING HEAD AND POWDER-BASED MICROFABRICATION (121)
        • 4.6.1 MEMBRANE LAMINATION (121)
        • 4.6.2 THREE-DIMENSIONAL PRINTING (122)
        • 4.6.3 LASER SINTERING (123)
        • 4.6.4 PHOTOPOLYMERIZATION (124)
      • 4.7 OTHER RP METHODS (124)
        • 4.7.1 SACRIFICIAL MOLDS (124)
        • 4.7.2 ELECTROSPINNING (125)
      • 4.8 INTEGRATION OF RP METHODS (127)
      • 4.9 COMMERCIAL RP SYSTEMS FOR TISSUE ENGINEERING SCAFFOLDS (127)
      • 4.10 DISCUSSION: LIMITATIONS AND CRITIQUES (128)
      • 4.11 CONCLUSION (129)
      • REFERENCES (130)
    • 5 Design and Fabrication Principles of Electrospinning of Scaffolds (132)
      • 5.1 BACKGROUND (132)
        • 5.1.1 BASIC PRINCIPLES OF SCAFFOLD-BASED TISSUE ENGINEERING (133)
      • 5.2 ELECTROSPINNING (134)
        • 5.2.1 INTRODUCTION (134)
        • 5.2.2 ELECTROSPINNING OF NATURAL POLYMERS (141)
        • 5.2.3 ELECTROSPINNING OF SYNTHETIC POLYMERS (142)
      • 5.3 PHYSICAL CHARACTERIZATION OF ELECTROSPUN SCAFFOLDS (144)
        • 5.3.1 MEASURING POROSITY, SURFACE ROUGHNESS, AND SPECIFIC SURFACE ENERGY OF SCAFFOLDS (144)
        • 5.3.2 MECHANICAL TESTING (148)
      • 5.4 TISSUE ENGINEERING APPLICATIONS BY USING ELECTROSPUN SCAFFOLDS (149)
        • 5.4.1 BONE TISSUE ENGINEERING (149)
        • 5.4.2 CARTILAGE TISSUE ENGINEERING (150)
        • 5.4.3 VASCULAR TISSUE ENGINEERING (151)
        • 5.4.4 NEURAL TISSUE ENGINEERING (152)
        • 5.4.5 ELECTROSPINNING OF CELLS (153)
      • 5.5 CONCLUSION (153)
      • REFERENCES (154)
  • Part II: Drug Delivery Systems (158)
    • 6 Nanoparticles in Cancer Drug Delivery Systems (160)
      • 6.1 INTRODUCTION (161)
      • 6.2 CHEMOTHERAPY (161)
        • 6.2.1 TUMOR TISSUES (161)
        • 6.2.2 PROBLEMS OF CHEMOTHERAPY (162)
      • 6.3 NANOPARTICLES IN CANCER THERAPY (162)
        • 6.3.1 PARTICULATE DRUG CARRIERS (162)
        • 6.3.2 LIPOSOMES (164)
        • 6.3.3 POLYMERIC NANOPARTICLES (165)
        • 6.3.4 OTHER NANOSTRUCTURES (167)
      • 6.4 IN VIVO BIODISTRIBUTION (169)
        • 6.4.1 BIODISTRIBUTION OF PARTICULATE DRUG CARRIERS (169)
        • 6.4.2 PHYSICOCHEMICAL FACTORS INFLUENCING BIODISTRIBUTION OF PARTICULATE DRUG CARRIERS (170)
        • 6.4.3 DESIGN OF LONG-CIRCULATING NANOPARTICLES: PEO-MODIFIED NANOPARTICLES (171)
      • 6.5 TARGETED DRUG DELIVERY FOR CHEMOTHERAPY (173)
        • 6.5.1 DRUG TARGETING (173)
        • 6.5.2 PASSIVE TARGETING (173)
        • 6.5.3 ACTIVE TARGETING (173)
        • 6.5.4 IN VIVO STUDIES WITH NANOPARTICULATES FOR TARGETED CHEMOTHERAPY (180)
      • 6.6 CONCLUSIONS (181)
      • REFERENCES (181)
    • 7 Polymeric Nano/Microparticles for Oral Delivery of Proteins and Peptides (188)
      • 7.1 INTRODUCTION (188)
      • 7.2 BARRIERS TO ORAL DELIVERY OF PROTEINS/PEPTIDES (189)
      • 7.3 STRATEGY FOR IMPROVED ORAL PROTEIN DELIVERY (190)
      • 7.4 POLYMERIC NANO/MICROPARTICLES AS A POSSIBLE ORAL PEPTIDE-DELIVERY SYSTEM (190)
        • 7.4.1 SYNTHETIC BIODEGRADABLE POLYMERIC NANO/MICROPARTICLES (192)
        • 7.4.2 NONBIODEGRADABLE SYNTHETIC POLYMERS (196)
        • 7.4.3 NATURAL AND PROTEIN-BASED POLYMERS FOR ORAL PEPTIDE DELIVERY (199)
        • 7.4.4 PREPARATION OF NANO/MICROPARTICLES (200)
      • 7.5 CONCLUDING REMARKS (204)
      • REFERENCES (204)
    • 8 Nanostructured Porous Biomaterials for Controlled Drug Release Systems (210)
      • 8.1 INTRODUCTION (210)
      • 8.2 NANOSTRUCTURED POROUS MATERIALS (213)
        • 8.2.1 SOFT NANOSTRUCTURED POROUS MATERIALS (213)
        • 8.2.2 INORGANIC NANOSTRUCTURED POROUS MATERIALS (214)
      • 8.3 SUMMARY AND OUTLOOK (226)
      • ACKNOWLEDGMENTS (227)
      • REFERENCES (227)
    • 9 Inorganic Nanostructures for Drug Delivery (234)
      • 9.1 INTRODUCTION (234)
      • 9.2 NANOSTRUCTURED SILICA AS DRUG CARRIERS (235)
      • 9.3 NANOSTRUCTURED CALCIUM CARBONATE AND CALCIUM PHOSPHATES AS DRUG CARRIERS (241)
      • 9.4 MAGNETIC TARGETING DRUG DELIVERY SYSTEMS (243)
      • 9.5 CONCLUDING REMARKS (248)
      • REFERENCES (248)
  • Part III: Nano Biomaterials and Biosensors (252)
    • 10 Self-Assembly of Nanostructures as Biomaterials (254)
      • 10.1 INTRODUCTION TO LAYER-BY-LAYER SELF-ASSEMBLY (255)
        • 10.1.1 INTRODUCTION (255)
        • 10.1.2 METHODS FOR LBL SELF-ASSEMBLY (255)
        • 10.1.3 MATERIALS FOR LBL SELF-ASSEMBLY (256)
        • 10.1.4 CHARACTERIZATION OF LBL SELF-ASSEMBLY (259)
      • 10.2 MULTILAYERED BIOFILMS THROUGH LBL SELF-ASSEMBLY (261)
        • 10.2.1 INTRODUCTION (261)
        • 10.2.2 MULTILAYERED POLYELECTROLYTE FILMS FOR CELL ADHESION (261)
        • 10.2.3 ULTRATHIN COATINGS ON MEDICAL IMPLANTS (263)
        • 10.2.4 DRUG INCORPORATION IN POLYELECTROLYTE FILMS (265)
        • 10.2.5 MICROPATTERNING OF SELF-ASSEMBLED STRUCTURES (265)
      • 10.3 POLYELECTROLYTE ENCAPSULATION FOR DRUG/GENE DELIVERY (267)
        • 10.3.1 INTRODUCTION (267)
        • 10.3.2 LOADING BIOMACROMOLECULES INTO HOLLOW POLYELECTROLYTE SHELLS (267)
        • 10.3.3 MICROENCAPSULATION FOR GENE DELIVERY (271)
        • 10.3.4 DIRECT COATING ON PROTEIN AGGREGATES (272)
        • 10.3.5 ENCAPSULATION OF SMALL-MOLECULE DRUG MICRO/NANOPARTICLES (273)
        • 10.3.6 CARRIER SURFACE FUNCTIONALIZATION (275)
      • 10.4 POLYMERIC MICELLES FOR DRUG AND GENE DELIVERY (276)
        • 10.4.1 INTRODUCTION (276)
        • 10.4.2 AMPHIPHILIC BLOCK COPOLYMER MICELLES: PEO-PPO-PEO BLOCK COPOLYMER (PLURONIC) (276)
        • 10.4.3 AMPHIPHILIC BLOCK COPOLYMERS BASED ON ALIPHATIC POLYESTERS (278)
        • 10.4.4 BLOCK COPOLYMERS BASED ON POLY L-AMINO ACID (PLAA) (280)
        • 10.4.5 “SMART” MICELLES FOR DRUG DELIVERY APPLICATION (282)
      • 10.5 ENCAPSULATION OF BIOLOGICAL CELLS (284)
      • 10.6 CONCLUSIONS (285)
      • ACKNOWLEDGMENTS (286)
      • REFERENCES (286)
    • 11 Electrohydrodynamic Processing of Micro- and Nanometer Biological Materials (292)
      • 11.1 INTRODUCTION (292)
      • 11.2 ELECTROSPRAYING (293)
        • 11.2.1 DEFINITION (293)
        • 11.2.2 BACKGROUND (294)
        • 11.2.3 MECHANISMS AND MODES OF ELECTROSPRAYING (296)
        • 11.2.4 PROCESSING PARAMETERS (297)
        • 11.2.5 THEORY DESCRIPTION AND MODELING (300)
        • 11.2.6 BASIC ELECTROSPRAYING SYSTEM (304)
        • 11.2.7 CHARACTERISTICS OF ELECTROSPRAYING (304)
        • 11.2.8 FABRICATION OF BIOLOGICAL MATERIALS (305)
      • 11.3 SUMMARY (346)
      • REFERENCES (347)
    • 12 Fabrication and Function of Biohybrid Nanomaterials Prepared via Supramolecular Approaches (352)
      • 12.1 INTRODUCTION (352)
      • 12.2 LIPID-BASED HYBRID NANOMATERIALS (353)
      • 12.3 HYBRID NANOMATERIALS WITH OTHER SMALL BIOACTIVE MOLECULES (358)
      • 12.4 HYBRID NANOMATERIALS WITH PROTEINS (366)
      • 12.5 FUTURE PERSPECTIVES (376)
      • ACKNOWLEDGMENT (378)
      • REFERENCES (378)
    • 13 Polypyrrole Nano- and Microsensors and Actuators for Biomedical Applications (384)
      • 13.1 INTRODUCTION (385)
      • 13.2 POLYPYRROLE ACTUATORS—SYNTHESIS AND PRINCIPLES OF OPERATION (386)
        • 13.2.1 INTRODUCTION (386)
        • 13.2.2 POLYPYRROLE ELECTROCHEMISTRY (386)
        • 13.2.3 ACTUATION OF POLYPYRROLE MICROSTRUCTURES (391)
        • 13.2.4 INTEGRATION OF POLYPYRROLE MICROSTRUCTURES WITH SILICON DEVICES (393)
      • 13.3 POLYPYRROLE MICROACTUATORS (395)
        • 13.3.1 BILAYER ACTUATORS (395)
        • 13.3.2 DIRECT-MODE POLYPYRROLE–PDMS MICROVALVE (396)
      • 13.4 POLYPYRROLE NANODEVICES (400)
        • 13.4.1 INTRODUCTION (400)
        • 13.4.2 POLYPYRROLE NANOWIRE ELECTROPOLYMERIZATION AND EVALUATION OF THE ELECTROCHEMICALLY CONTROLLED VOLUME CHANGE (400)
        • 13.4.3 POLYPYRROLE NANOWIRE MORPHOLOGY (404)
        • 13.4.4 TIME RESPONSE OF ISOLATED NANOWIRES (406)
      • 13.5 POLYPYRROLE BIOSENSORS (410)
      • REFERENCES (415)
    • 14 Processing of Biosensing Materials and Biosensors (418)
      • 14.1 BIORECOGNITION MATERIALS (419)
        • 14.1.1 ENZYMES (419)
        • 14.1.2 MICROORGANISMS (432)
        • 14.1.3 DNA (439)
        • 14.1.4 ANTIGENS–ANTIBODIES (439)
      • 14.2 INTERMEDIA MATERIALS (439)
        • 14.2.1 CARBON NANOTUBES (440)
        • 14.2.2 POLYMER (445)
        • 14.2.3 NANOMATERIALS (450)
        • 14.2.4 FUNCTIONALIZED MONOLAYERS (455)
        • 14.2.5 DIAMOND (456)
      • REFERENCES (457)
  • Part IV: Other Biomaterials (472)
    • 15 Synthetic and Natural Degradable Polymeric Biomaterials (474)
      • 15.1 INTRODUCTION (474)
      • 15.2 DEGRADABLE POLYMERS (476)
        • 15.2.1 POLYESTERS (476)
        • 15.2.2 POLYDIOXANONE (482)
        • 15.2.3 POLYETHYLENE GLYCOL (482)
        • 15.2.4 TRIMETHYLENE CARBONATE (483)
        • 15.2.5 POLY(α-AMINO ACIDS) (484)
        • 15.2.6 POLY(ALKYL 2-CYANOACRYLATES) (484)
        • 15.2.7 POLYURETHANES (485)
      • 15.3 NATURAL DEGRADABLE POLYMERS (486)
        • 15.3.1 ALGINATES (486)
        • 15.3.2 CHITOSAN (487)
        • 15.3.3 ALBUMIN (489)
        • 15.3.4 COLLAGEN (489)
        • 15.3.5 HYALURONIC ACID (489)
      • 15.4 APPLICATIONS (490)
        • 15.4.1 ORTHOPEDICS (490)
        • 15.4.2 TISSUE ENGINEERING AND DEGRADABLE POLYMERS (490)
        • 15.4.3 DRUG DELIVERY (492)
      • 15.5 CONCLUSION (492)
      • REFERENCES (493)
    • 16 Electroactive Polymers as Smart Materials with Intrinsic Actuation Properties: New Functionalities for Biomaterials (500)
      • 16.1 INTRODUCTION (500)
      • 16.2 ELECTROACTIVE POLYMERS (502)
      • 16.3 POLYMER GELS (503)
      • 16.4 IONIC POLYMER–METAL COMPOSITES (506)
      • 16.5 CONDUCTING POLYMERS (507)
      • 16.6 DIELECTRIC ELASTOMERS (513)
      • 16.7 CONCLUSIONS (515)
      • REFERENCES (515)
    • 17 Blood-Contacting Surfaces (522)
      • 17.1 INTRODUCTION (522)
      • 17.2 BLOOD (523)
        • 17.2.1 ERYTHROCYTES (524)
        • 17.2.2 LEUKOCYTES (524)
        • 17.2.3 PLATELETS (525)
        • 17.2.4 PLASMA (525)
      • 17.3 BLOOD VESSELS (525)
      • 17.4 BLOOD-CONTACTING DEVICES (526)
      • 17.5 INTERACTION OF BLOOD WITH SYNTHETIC SURFACES (527)
        • 17.5.1 PROTEIN ADSORPTION (527)
        • 17.5.2 COAGULATION (527)
        • 17.5.3 PLATELET ADHESION AND ACTIVATION (532)
        • 17.5.4 COMPLEMENT SYSTEM (533)
        • 17.5.5 LEUKOCYTES (534)
      • 17.6 SURFACES OF BLOOD-CONTACTING DEVICES (534)
        • 17.6.1 BIOINERT MATERIALS IN BLOOD-CONTACTING DEVICES (535)
        • 17.6.2 POLYMERIC COATINGS (536)
        • 17.6.3 LIVING CELL LAYER AS BOUNDARY LAYER (538)
        • 17.6.4 TISSUE ENGINEERING (539)
      • 17.7 BLOOD COMPATIBILITY TESTING (540)
        • 17.7.1 THROMBIN GENERATION AND THROMBUS FORMATION (541)
        • 17.7.2 PLATELET ADHESION AND ACTIVATION (543)
        • 17.7.3 LEUKOCYTE ADHESION AND ACTIVATION (545)
        • 17.7.4 COMPLEMENT ACTIVATION (546)
        • 17.7.5 HEMOLYSIS (546)
        • 17.7.6 CELL COMPATIBILITY/ENDOTHELIALIZATION (546)
      • 17.8 CONCLUDING REMARKS (547)
      • REFERENCES (548)
    • 18 Improving Blood Compatibility of Biomaterials Using a Novel Antithrombin-Heparin Covalent Complex (552)
      • 18.1 INTRODUCTION (552)
      • 18.2 ANTITHROMBIN (555)
        • 18.2.1 CHEMICAL STRUCTURE OF ANTITHROMBIN (555)
        • 18.2.2 FUNCTIONAL BIOCHEMISTRY OF ANTITHROMBIN (556)
      • 18.3 HEPARIN (558)
        • 18.3.1 CHEMICAL STRUCTURE OF HEPARIN (558)
        • 18.3.2 FUNCTIONAL BIOCHEMISTRY OF HEPARIN (559)
      • 18.4 OVERVIEW OF COVALENT ANTITHROMBIN–HEPARIN COMPLEXES (561)
        • 18.4.1 LIMITATIONS OF CURRENT HEPARINS (561)
        • 18.4.2 POTENTIAL ADVANTAGES OF COVALENT ANTITHROMBIN-HEPARIN COMPLEXES (562)
      • 18.5 DEVELOPMENT OF COVALENT ANTITHROMBIN–HEPARIN COMPLEXES (564)
        • 18.5.1 CONCEPTS FOR COVALENT ANTITHROMBIN-HEPARIN SYNTHESIS (564)
        • 18.5.2 CHEMICAL STRUCTURES AND In Vitro ACTIVITIES (565)
        • 18.5.3 EFFECTS In Vivo (570)
      • 18.6 SURFACE COATING WITH COVALENT ANTITHROMBIN–HEPARIN COMPLEXES (573)
        • 18.6.1 CHEMISTRY AND In Vitro CHARACTERIZATION (573)
        • 18.6.2 IN VIVO PERFORMANCE (575)
      • 18.7 FUTURE DIRECTIONS (577)
      • REFERENCES (577)
    • 19 Surface Modification of Biomaterials Using Plasma Immersion Ion Implantation and Deposition (590)
      • 19.1 PLASMA SCIENCE AND TECHNOLOGY (591)
        • 19.1.1 PLASMA SOURCES (591)
        • 19.1.2 PLASMA PROPERTIES AND DIAGNOSTICS (593)
      • 19.2 PLASMA IMMERSION ION IMPLANTATION AND DEPOSITION (595)
        • 19.2.1 CONCEPTS AND FUNDAMENTALS OF PIII (595)
        • 19.2.2 ION-SOLID INTERACTIONS INDUCED BY ION IMPLANTATION (596)
        • 19.2.3 DEPOSITION PROCESS AND DYNAMICS (597)
        • 19.2.4 PIII VERSUS CONVENTIONAL BEAM-LINE ION IMPLANTATION (598)
        • 19.2.5 APPLICATIONS OF PIII (598)
      • 19.3 SURFACE ACTIVATION OF BIOMATERIALS (600)
        • 19.3.1 HYDROGEN PIII (600)
        • 19.3.2 Ca/Na PIIID OF TITANIUM (607)
      • 19.4 SURFACE MODIFICATION OF NiTi ALLOY (612)
      • 19.5 SURFACE MODIFICATION OF BLOOD-CONTACTING MATERIALS (618)
        • 19.5.1 DLC THIN FILMS (618)
        • 19.5.2 TI–O THIN FILM (631)
      • 19.6 SURFACE MODIFICATION OF POLYMERS FOR ENHANCED ANTIBACTERIAL PROPERTIES (635)
        • 19.6.1 Cu-IMPLANTED POLYMERS (635)
        • 19.6.2 GRAFTING OF ANTIMICROBIAL REAGENTS ON POLYMERS (639)
      • 19.7 SUMMARY (640)
      • ACKNOWLEDGMENTS (640)
      • REFERENCES (641)
    • 20 Biomaterials for Gastrointestinal Medicine, Repair, and Reconstruction (650)
      • 20.1 INTRODUCTION (651)
      • 20.2 BIOMATERIALS USED FOR GASTROESOPHAGEAL REFLUX DISEASE (652)
        • 20.2.1 GASTROESOPHAGEAL REFLUX DISEASE (652)
        • 20.2.2 SPHINCTER AUGMENTATION USING BIOMATERIALS (652)
      • 20.3 BIOMATERIALS USED FOR GASTROINTESTINAL FISTULA REPAIR (653)
        • 20.3.1 GASTROINTESTINAL FISTULAS (653)
        • 20.3.2 FISTULA REPAIR USING BIOMATERIALS (653)
      • 20.4 BULKING BIOMATERIALS (654)
        • 20.4.1 FECAL INCONTINENCE (654)
        • 20.4.2 INJECTABLE BULKING MATERIALS (655)
      • 20.5 BIOMATERIALS AND LAPAROTOMY PROCEDURES (658)
        • 20.5.1 INTRA-ABDOMINAL ADHESIONS (658)
        • 20.5.2 BIOMATERIALS TO PREVENT INTRA-ABDOMINAL ADHESIONS (658)
      • 20.6 TARGETED DRUG DELIVERY WITH BIOMATERIALS (661)
        • 20.6.1 DRUG DELIVERY TO THE COLON (661)
      • 20.7 BIOMATERIALS FOR INTESTINAL TISSUE ENGINEERING (664)
        • 20.7.1 INTESTINAL FAILURE AND TISSUE ENGINEERING (664)
        • 20.7.2 BIOMATERIALS USED FOR INTESTINAL TISSUE ENGINEERING (665)
      • 20.8 SUMMARY (670)
      • REFERENCES (671)
    • 21 Biomaterials for Cartilage Reconstruction and Repair (676)
      • 21.1 ARTICULAR CARTILAGE BIOLOGY—STRUCTURE AND PROPERTIES (676)
      • 21.2 REPAIR OF ARTICULAR CARTILAGE (678)
      • 21.3 CARTILAGE RECONSTRUCTION—ARTIFICIAL CARTILAGE (679)
        • 21.3.1 HYDROGELS (679)
        • 21.3.2 SYNTHETIC SEGMENTED POLYESTERS AND POLYURETHANES (684)
      • 21.4 TISSUE ENGINEERING APPROACH (685)
      • 21.5 TOTAL JOINT REPLACEMENT (687)
      • 21.6 SUMMARY (692)
      • ACKNOWLEDGMENTS (692)
      • REFERENCES (692)
  • Index (with page links) (696)
    • A (696)
    • B (697)
    • C (699)
    • D (701)
    • E (702)
    • F (703)
    • G (704)
    • H (704)
    • I (705)
    • J (706)
    • K (706)
    • L (706)
    • M (707)
    • N (708)
    • O (709)
    • P (710)
    • Q (714)
    • R (714)
    • S (714)
    • T (716)
    • U (717)
    • V (718)
    • W (718)
    • X (718)
    • Y (718)
    • Z (718)
  • Back Page (720)
Loading...