کتابخانه مرکزی دانشگاه صنعتی شریف
    • [نمايش بزرگتر]
    • [نمايش کوچکتر]
  • صفحه 
     از  0
  • [صفحه قبل]
  • [صفحه بعد]
  • [نمایش تمام صفحه]
  • [بستن]
 
جداسازی اجزای قطران زغال سنگ (فنانترن)با استفاده از سیالات فوق بحرانی
اسماعیل زاده، فریدون.

اطلاعات کتابشناختی

جداسازی اجزای قطران زغال سنگ (فنانترن)با استفاده از سیالات فوق بحرانی
پدیدآور اصلی :   اسماعیل زاده، فریدون.
ناشر :   صنعتی شریف
سال انتشار  :   1380
موضوع ها :   آنتراسن Anthracene فنانترن Phenanthrene کربازول Carbazole سیال فوق بحرانی Supercritical...
شماره راهنما :   ‭06-33899

جستجو در محتوا

ترتيب

فهرست مطالب

  • Cover (1)
  • Title Page (5)
  • Copyright Page (6)
  • Preface (9)
  • Contents (15)
  • Chapter 1: Measured Thermodynamic Propertiesand Other Basic Concepts (19)
    • Learning Objectives (19)
    • 1.1 Thermodynamics (20)
    • 1.2 Preliminary Concepts—The Language of Thermo (21)
      • Thermodynamic Systems (21)
      • Properties (22)
      • Processes (23)
      • Hypothetical Paths (24)
      • Phases of Matter (24)
      • Length Scales (24)
      • Units (25)
    • 1.3 Measured Thermodynamic Properties (25)
      • Volume (Extensive or Intensive) (25)
      • Temperature (Intensive) (26)
      • Pressure (Intensive) (29)
      • The Ideal Gas (31)
    • 1.4 Equilibrium (33)
      • Types of Equilibrium (33)
      • Molecular View of Equilibrium (34)
    • 1.5 Independent and Dependent Thermodynamic Properties (35)
      • The State Postulate (35)
      • Gibbs Phase Rule (36)
    • 1.6 The PvT Surface and Its Projections for Pure Substances (38)
      • Changes of State During a Process (40)
      • Saturation Pressure vs. Vapor Pressure (41)
      • The Critical Point (42)
    • 1.7 Thermodynamic Property Tables (44)
    • 1.8 Summary (48)
    • 1.9 Problems (49)
      • Conceptual Problems (49)
      • Numerical Problems (52)
  • Chapter 2: The First Law of Thermodynamics (54)
    • Learning Objectives (54)
    • 2.1 The First Law of Thermodynamics (55)
      • Forms of Energy (55)
      • Ways We Observe Changes in U (57)
      • Internal Energy of an Ideal Gas (58)
      • Work and Heat: Transfer of Energy Between the System and the Surroundings (60)
    • 2.2 Construction of Hypothetical Paths (64)
    • 2.3 Reversible and Irreversible Processes (66)
      • Reversible Processes (66)
      • Irreversible Processes (66)
      • Efficiency (73)
    • 2.4 The First Law of Thermodynamics for Closed Systems (73)
      • Integral Balances (73)
      • Differential Balances (75)
    • 2.5 The First Law of Thermodynamics for Open Systems (78)
      • Material Balance (78)
      • Flow Work (78)
      • Enthalpy (80)
      • Steady-State Energy Balances (80)
      • Transient Energy Balance (81)
    • 2.6 Thermochemical Data For U and H (85)
      • Heat Capacity: cv and cp (85)
      • Latent Heats (94)
      • Enthalpy of Reactions (98)
    • 2.7 Reversible Processes in Closed Systems (110)
      • Reversible, Isothermal Expansion (Compression) (110)
      • Adiabatic Expansion (Compression) with Constant Heat Capacity (111)
      • Summary (113)
    • 2.8 Open-System Energy Balances on Process Equipment (113)
      • Nozzles and Diffusers (114)
      • Turbines and Pumps (or Compressors) (115)
      • Heat Exchangers (116)
      • Throttling Devices (119)
    • 2.9 Thermodynamic Cycles and the Carnot Cycle (120)
      • Efficiency (122)
    • 2.10 Summary (126)
    • 2.11 Problems (128)
      • Conceptual Problems (128)
      • Numerical Problems (131)
  • Chapter 3: Entropy and the Second Law Of Thermodynamics (145)
    • Learning Objectives (145)
      • 3.1 Directionality of Processes/Spontaneity (146)
      • 3.2 Reversible and Irreversible Processes (Revisited) and their Relationship to Directionality (147)
      • 3.3 Entropy, the Thermodynamic Property (149)
      • 3.4 The Second Law of Thermodynamics (158)
      • 3.5 Other Common Statements of the Second Law of Thermodynamics (160)
      • 3.6 The Second Law of Thermodynamics for Closed and Open Systems (161)
        • Calculation of Δs for Closed Systems (161)
        • Calculation of Δs for Open Systems (165)
      • 3.7 Calculation of Δs for an Ideal Gas (169)
      • 3.8 The Mechanical Energy Balance and the Bernoulli Equation (178)
      • 3.9 Vapor-Compression Power and Refrigeration Cycles (182)
        • The Rankine Cycle (182)
        • The Vapor-Compression Refrigeration Cycle (187)
      • 3.10 Exergy (Availability) Analysis (190)
        • Exergy (191)
        • Exthalpy—Flow Exergy in Open Systems (196)
      • 3.11 Molecular View of Entropy (200)
        • Maximizing Molecular Configurations over Space (203)
        • Maximizing Molecular Configurations over Energy (204)
      • 3.12 Summary (208)
      • 3.13 Problems (209)
        • Conceptual Problems (209)
        • Numerical Problems (213)
  • Chapter 4: Equations of State and Intermolecular Forces (227)
    • Learning Objectives (227)
    • 4.1 Introduction (228)
      • Motivation (228)
      • The Ideal Gas (229)
    • 4.2 Intermolecular Forces (229)
      • Internal (Molecular) Energy (229)
      • The Electric Nature of Atoms and Molecules (230)
      • Attractive Forces (231)
      • Intermolecular Potential Functions and Repulsive Forces (241)
      • Principle of Corresponding States (244)
      • Chemical Forces (246)
    • 4.3 Equations of State (250)
      • The van der Waals Equation of State (250)
      • Cubic Equations of State (General) (256)
      • The Virial Equation of State (258)
      • Equations of State for Liquids and Solids (263)
    • 4.4 Generalized Compressibility Charts (264)
    • 4.5 Determination of Parameters for Mixtures (267)
      • Cubic Equations of State (268)
      • Virial Equation of State (269)
      • Corresponding States (270)
    • 4.6 Summary (272)
    • 4.7 Problems (273)
      • Conceptual Problems (273)
      • Numerical Problems (275)
  • Chapter 5: The Thermodynamic Web (283)
    • Learning Objectives (283)
    • 5.1 Types of Thermodynamic Properties (283)
      • Measured Properties (283)
      • Fundamental Properties (284)
      • Derived Thermodynamic Properties (284)
    • 5.2 Thermodynamic Property Relationships (285)
      • Dependent and Independent Properties (285)
      • Hypothetical Paths (revisited) (286)
      • Fundamental Property Relations (287)
      • Maxwell Relations (289)
      • Other Useful Mathematical Relations (290)
      • Using the Thermodynamic Web to Access Reported Data (291)
    • 5.3 Calculation of Fundamental and Derived Properties Using Equations of State and Other Measured Quantities (294)
      • Relation of ds in Terms of Independent Properties T and v and Independent Properties T and P (294)
      • Relation of du in Terms of Independent Properties T and v (295)
      • Relation of dh in Terms of Independent Properties T and P (299)
      • Alternative Formulation of the Web using T and P as Independent Properties (305)
    • 5.4 Departure Functions (308)
      • Enthalpy Departure Function (308)
      • Entropy Departure Function (311)
    • 5.5 Joule-Thomson Expansion and Liquefaction (316)
      • Joule-Thomson Expansion (316)
      • Liquefaction (319)
    • 5.6 Summary (322)
    • 5.7 Problems (323)
      • Conceptual Problems (323)
      • Numerical Problems (325)
  • Chapter 6: Phase Equilibria I: Problem Formulation (333)
    • Learning Objectives (333)
    • 6.1 Introduction (333)
      • The Phase Equilibria Problem (334)
    • 6.2 Pure Species Phase Equilibrium (336)
      • Gibbs Energy as a Criterion for Chemical Equilibrium (336)
      • Roles of Energy and Entropy in Phase Equilibria (339)
      • The Relationship Between Saturation Pressure and Temperature: The Clapeyron Equation (345)
      • Pure Component Vapor–Liquid Equilibrium: The Clausius–Clapeyron Equation (346)
    • 6.3 Thermodynamics of Mixtures (352)
      • Introduction (352)
      • Partial Molar Properties (353)
      • The Gibbs–Duhem Equation (358)
      • Summary of the Different Types of Thermodynamic Properties (360)
      • Property Changes of Mixing (361)
      • Determination of Partial Molar Properties (375)
      • Relations Among Partial Molar Quantities (384)
    • 6.4 Multicomponent Phase Equilibria (385)
      • The Chemical Potential—The Criteria for Chemical Equilibrium (385)
      • Temperature and Pressure Dependence of μi (388)
    • 6.5 Summary (390)
    • 6.6 Problems (391)
      • Conceptual Problems (391)
      • Numerical Problems (395)
  • Chapter 7: Phase Equilibria II: Fugacity (409)
    • Learning Objectives (409)
    • 7.1 Introduction (409)
    • 7.2 The Fugacity (410)
      • Definition of Fugacity (410)
      • Criteria for Chemical Equilibria in Terms of Fugacity (413)
    • 7.3 Fugacity in the Vapor Phase (414)
      • Fugacity and Fugacity Coefficient of Pure Gases (414)
      • Fugacity and Fugacity Coefficient of Species i in a Gas Mixture (421)
      • The Lewis Fugacity Rule (429)
      • Property Changes of Mixing for Ideal Gases (430)
    • 7.4 Fugacity in the Liquid Phase (432)
      • Reference States for the Liquid Phase (432)
      • Thermodynamic Relations Between Υi (440)
      • Models for Υi Using ɡΕ (446)
      • Equation of State Approach to the Liquid Phase (467)
    • 7.5 Fugacity in the Solid Phase (467)
      • Pure Solids (467)
      • Solid Solutions (467)
      • Interstitials and Vacancies in Crystals (468)
    • 7.6 Summary (468)
    • 7.7 Problems (470)
      • Conceptual Problems (470)
      • Numerical Problems (472)
  • Chapter 8: Phase Equilibria III: Applications (484)
    • Learning Objectives (484)
    • 8.1 Vapor–Liquid Equilibrium (VLE) (485)
      • Raoult’s Law (Ideal Gas and Ideal Solution) (485)
      • Nonideal Liquids (493)
      • Azeotropes (502)
      • Fitting Activity Coefficient Models with VLE Data (508)
      • Solubility of Gases in Liquids (513)
      • Vapor–Liquid Equilibrium Using the Equations of State Method (519)
    • 8.2 Liquid (a)-Liquid (β) Equilibrium: LLE (529)
    • 8.3 Vapor–Liquid (a)-Liquid (β) Equilibrium: VLLE (537)
    • 8.4 Solid–Liquid and Solid–Solid Equilibrium: SLE and SSE (541)
      • Pure Solids (541)
      • Solid Solutions (547)
    • 8.5 Colligative Properties (549)
      • Boiling Point Elevation and Freezing Point Depression (549)
      • Osmotic Pressure (553)
    • 8.6 Summary (556)
    • 8.7 Problems (558)
      • Conceptual Problems (558)
      • Numerical Problems (562)
  • Chapter 9: Chemical Reaction Equilibria (580)
    • Learning Objectives (580)
    • 9.1 Thermodynamics and Kinetics (581)
    • 9.2 Chemical Reaction and Gibbs Energy (583)
    • 9.3 Equilibrium for a Single Reaction (586)
    • 9.4 Calculation of K from Thermochemical Data (590)
      • Calculation of K from Gibbs Energy of Formation (590)
      • The Temperature Dependence of K (592)
    • 9.5 Relationship Between the Equilibrium Constant and the Concentrations of Reacting Species (597)
      • The Equilibrium Constant for a Gas-Phase Reaction (597)
      • The Equilibrium Constant for a Liquid-Phase (or Solid-Phase) Reaction (604)
      • The Equilibrium Constant for a Heterogeneous Reaction (605)
    • 9.6 Equilibrium in Electrochemical Systems (607)
      • Electrochemical Cells (608)
      • Shorthand Notation (609)
      • Electrochemical Reaction Equilibrium (610)
      • Thermochemical Data: Half-Cell Potentials (612)
      • Activity Coefficients in Electrochemical Systems (615)
    • 9.7 Multiple Reactions (617)
      • Extent of Reaction and Equilibrium Constant for R Reactions (617)
      • Gibbs Phase Rule for Chemically Reacting Systems and Independent Reactions (619)
      • Solution of Multiple Reaction Equilibria by Minimization of Gibbs Energy (628)
    • 9.8 Reaction Equilibria of Point Defects in Crystalline Solids (630)
      • Atomic Defects (631)
      • Electronic Defects (634)
      • Effect of Gas Partial Pressure on Defect Concentrations (637)
    • 9.9 Summary (642)
    • 9.10 Problems (644)
      • Conceptual Problems (644)
      • Numerical Problems (646)
  • Appendix A Physical Property Data (657)
    • A.1 Critical Constants, Acentric Factors, and Antoine Coefficients (657)
    • A.2 Heat Capacity Data (659)
    • A.3 Enthalpy and Gibbs Energy of Formation at 298 K and 1 Bar (661)
  • Appendix B Steam Tables (665)
    • B.1 Saturated Water: Temperature Table (666)
    • B.2 Saturated Water: Pressure Table (668)
    • B.3 Saturated Water: Solid-Vapor (670)
    • B.4 Superheated Water Vapor (671)
    • B.5 Subcooled Liquid Water (677)
  • Appendix C Lee–Kesler Generalized Correlation Tables (678)
  • Appendix D Unit Systems (694)
    • D.1 Common Variables Used in Thermodynamics and Their Associated Units (694)
    • D.2 Conversion between CGS (Gaussian) units and SI units (697)
  • Appendix E ThermoSolver Software (698)
    • E.1 Software Description (698)
    • E.2 Corresponding States Using The Lee–Kesler Equation of State (701)
  • Appendix F References (703)
    • F.1 Sources of Thermodynamic Data (703)
    • F.2 Textbooks and Monographs (704)
  • Index (705)
Loading...