کتابخانه مرکزی دانشگاه صنعتی شریف
    • [نمايش بزرگتر]
    • [نمايش کوچکتر]
  • صفحه 
     از  0
  • [صفحه قبل]
  • [صفحه بعد]
  • [نمایش تمام صفحه]
  • [بستن]
 
The topology of the calculus of variations in the large
Liusternik, L. A.(Lazar Aronovich)

اطلاعات کتابشناختی

The topology of the calculus of variations in the large
Author :   Liusternik, L. A.(Lazar Aronovich)
Publisher :   American Mathematical Society,
Pub. Year  :   1966
Subjects :   Calculus of variations. Topology.
Call Number :   ‭QA 316 .L713

جستجو در محتوا

ترتيب

فهرست مطالب

  • Cover (1)
  • Half-title (3)
  • Title (5)
  • Copyright (6)
  • Dedication (7)
  • Contents (9)
  • Preface (17)
  • 1 Vector algebra (21)
    • 1.1 Preliminaries (21)
    • 1.2 Coordinate system invariance (24)
    • 1.3 Vector multiplication (29)
      • 1.3.1 Multiplication by a scalar (29)
      • 1.3.2 Scalar or dot product (29)
      • 1.3.3 Vector or cross product (30)
    • 1.4 Useful products of vectors (32)
      • 1.4.1 Triple scalar product (32)
      • 1.4.2 Triple vector product (33)
    • 1.5 Linear vector spaces (33)
    • 1.6 Focus: periodic media and reciprocal lattice vectors (37)
    • 1.7 Additional reading (44)
    • 1.8 Exercises (44)
  • 2 Vector calculus (48)
    • 2.1 Introduction (48)
    • 2.2 Vector integration (49)
      • 2.2.1 Path integrals (49)
      • 2.2.2 Surface integrals (51)
    • 2.3 The gradient, V (55)
    • 2.4 Divergence, V (57)
    • 2.5 The curl, Vx (61)
    • 2.6 Further applications of V (63)
      • 2.6.1… (63)
      • 2.6.2… (63)
      • 2.6.3… (64)
      • 2.6.4 Laplacian,… (64)
    • 2.7 Gauss' theorem (divergence theorem) (65)
    • 2.8 Stokes' theorem (67)
    • 2.9 Potential theory (68)
    • 2.10 Focus: Maxwell's equations in integral and differential form (71)
      • 2.10.1 Gauss’ law and “no magnetic monopoles” (72)
      • 2.10.2 Faraday’s law and Ampère’s law (73)
      • 2.11 Focus: gauge freedom in Maxwell’s equations (77)
    • 2.11 Focus: gauge freedom in Maxwell's equations (77)
    • 2.12 Additional reading (80)
    • 2.13 Exercises (80)
  • 3 Vector calculus in curvilinear coordinate systems (84)
    • 3.1 Introduction: systems with different symmetries (84)
    • 3.2 General orthogonal coordinate systems (85)
    • 3.3 Vector operators in curvilinear coordinates (89)
      • 3.3.1 The gradient (89)
      • 3.3.2 The divergence (90)
      • 3.3.3 The curl (91)
    • 3.4 Cylindrical coordinates (93)
    • 3.5 Spherical coordinates (96)
    • 3.6 Exercises (99)
  • 4 Matrices and linear algebra (103)
    • 4.1 Introduction: Polarization and Jones vectors (103)
      • 4.1.1 Linear polarization to circular polarization (107)
      • 4.1.2 Rotation of polarization (107)
      • 4.1.3 Optical attenuator (107)
    • 4.2 Matrix algebra (108)
    • 4.3 Systems of equations, determinants, and inverses (113)
      • 4.3.1 Gaussian elimination (119)
      • 4.3.2 Gauss–Jordan matrix inversion (120)
    • 4.4 Orthogonal matrices (122)
    • 4.5 Hermitian matrices and unitary matrices (125)
    • 4.6 Diagonalization of matrices, eigenvectors, and eigenvalues (127)
      • 4.6.1 Hermitian matrices, normal matrices, and eigenvalues (132)
    • 4.7 Gram--Schmidt orthonormalization (135)
    • 4.8 Orthonormal vectors and basis vectors (138)
    • 4.9 Functions of matrices (140)
    • 4.10 Focus: matrix methods for geometrical optics (140)
      • 4.10.1 Introduction (140)
      • 4.10.2 Translation and refraction in matrix form (143)
      • 4.10.3 Lenses (145)
      • 4.10.4 Conjugate matrix (148)
      • 4.10.5 Imaging by a thin lens (150)
      • 4.10.6 Lens with a dielectric plate (151)
      • 4.10.7 Telescope (152)
    • 4.11 Additional reading (153)
    • 4.12 Exercises (153)
  • 5 Advanced matrix techniques and tensors (159)
    • 5.1 Introduction: Foldy–Lax scattering theory (159)
    • 5.2 Advanced matrix terminology (162)
    • 5.3 Left--right eigenvalues and biorthogonality (163)
    • 5.4 Singular value decomposition (166)
    • 5.5 Other matrix manipulations (173)
      • 5.5.1 Gaussian elimination with pivoting (173)
      • 5.5.2 LU decomposition (175)
    • 5.6 Tensors (179)
      • 5.6.1 Einstein summation convention (179)
      • 5.6.2 Covariant and contravariant vectors and tensors (180)
      • 5.6.3 Tensor addition and tensor products (182)
      • 5.6.4 The metric tensor (184)
      • 5.6.5 Pseudotensors (188)
      • 5.6.6 Tensors in curvilinear coordinates (189)
      • 5.6.7 The covariant derivative (192)
    • 5.7 Additional reading (194)
    • 5.8 Exercises (194)
  • 6 Distributions (197)
    • 6.1 Introduction: Gauss' law and the Poisson equation (197)
    • 6.2 Introduction to delta functions (201)
    • 6.3 Calculus of delta functions (204)
      • 6.3.1 Shifting (204)
      • 6.3.2 Scaling (204)
      • 6.3.3 Composition (204)
      • 6.3.4 Derivatives (205)
    • 6.4 Other representations of the delta function (205)
    • 6.5 Heaviside step function (207)
    • 6.6 Delta functions of more than one variable (208)
    • 6.7 Additional reading (212)
    • 6.8 Exercises (212)
  • 7 Infinite series (215)
    • 7.1 Introduction: the Fabry--Perot interferometer (215)
    • 7.2 Sequences and series (218)
    • 7.3 Series convergence (221)
    • 7.4 Series of functions (230)
    • 7.5 Taylor series (233)
    • 7.6 Taylor series in more than one variable (238)
    • 7.7 Power series (240)
    • 7.8 Focus: convergence of the Born series (241)
    • 7.9 Additional reading (246)
    • 7.10 Exercises (246)
  • 8 Fourier series (250)
    • 8.1 Introduction: diffraction gratings (250)
    • 8.2 Real-valued Fourier series (253)
    • 8.3 Examples (256)
    • 8.4 Integration range of the Fourier series (259)
    • 8.5 Complex-valued Fourier series (259)
    • 8.6 Properties of Fourier series (260)
      • 8.6.1 Symmetric series (260)
      • 8.6.2 Existence, completeness, and closure relations (262)
    • 8.7 Gibbs phenomenon and convergence in the mean (263)
    • 8.8 Focus: X-ray diffraction from crystals (266)
    • 8.9 Additional reading (269)
    • 8.10 Exercises (269)
  • 9 Complex analysis (272)
    • 9.1 Introduction: electric potential in an infinite cylinder (272)
    • 9.2 Complex algebra (274)
    • 9.3 Functions of a complex variable (278)
    • 9.4 Complex derivatives and analyticity (281)
    • 9.5 Complex integration and Cauchy's integral theorem (285)
    • 9.6 Cauchy's integral formula (289)
    • 9.7 Taylor series (291)
    • 9.8 Laurent series (293)
    • 9.9 Classification of isolated singularities (296)
    • 9.10 Branch points and Riemann surfaces (298)
    • 9.11 Residue theorem (305)
    • 9.12 Evaluation of definite integrals (308)
      • 9.12.1 Definite integrals… (308)
      • 9.12.2 Definite integrals… (309)
      • 9.12.3 Definite integrals… (312)
      • 9.12.4 Other integrals (314)
    • 9.13 Cauchy principal value (317)
    • 9.14 Focus: Kramers--Kronig relations (319)
    • 9.15 Focus: optical vortices (322)
    • 9.16 Additional reading (328)
    • 9.17 Exercises (328)
  • 10 Advanced complex analysis (332)
    • 10.1 Introduction (332)
    • 10.2 Analytic continuation (332)
    • 10.3 Stereographic projection (336)
    • 10.4 Conformal mapping (345)
    • 10.5 Significant theorems in complex analysis (352)
      • 10.5.1 Liouville’s theorem (353)
      • 10.5.2 Morera’s theorem (353)
      • 10.5.3 Maximum modulus principle (355)
      • 10.5.4 Arguments, zeros, and Rouché’s theorem (356)
    • 10.6 Focus: analytic properties of wavefields (360)
    • 10.7 Focus: optical cloaking and transformation optics (365)
    • 10.8 Exercises (368)
  • 11 Fourier transforms (370)
    • 11.1 Introduction: Fraunhofer diffraction (370)
    • 11.2 The Fourier transform and its inverse (372)
    • 11.3 Examples of Fourier transforms (374)
    • 11.4 Mathematical properties of the Fourier transform (378)
      • 11.4.1 Existence conditions for Fourier transforms (379)
      • 11.4.2 The Fourier inverse and delta functions (381)
      • 11.4.3 Other forms of the Fourier transform (382)
      • 11.4.4 Linearity of the Fourier transform (383)
      • 11.4.5 Conjugation (383)
      • 11.4.6 Time shift (383)
      • 11.4.7 Frequency shift (384)
      • 11.4.8 Scaling property (384)
      • 11.4.9 Differentiation in the time domain (385)
      • 11.4.10 Differentiation in the frequency domain (385)
    • 11.5 Physical properties of the Fourier transform (385)
      • 11.5.1 The convolution theorem (386)
      • 11.5.2 Parseval’s theorem and Plancherel’s identity (388)
      • 11.5.3 Uncertainty relations (389)
    • 11.6 Eigenfunctions of the Fourier operator (392)
    • 11.7 Higher-dimensional transforms (393)
    • 11.8 Focus: spatial filtering (395)
    • 11.9 Focus: angular spectrum representation (397)
      • 11.9.1 Angular spectrum representation in a half-space (398)
      • 11.9.2 The Weyl representation of a spherical wave (400)
    • 11.10 Additional reading (402)
    • 11.11 Exercises (403)
  • 12 Other integral transforms (406)
    • 12.1 Introduction: the Fresnel transform (406)
      • 12.1.1 Shift (407)
      • 12.1.2 Scaling property (407)
      • 12.1.3 Differentiation (408)
      • 12.1.4 Inverse Fresnel transform (408)
      • 12.1.5 Convolution (409)
      • 12.1.6 Plancherel’s identity (410)
      • 12.1.7 Observations (410)
    • 12.2 Linear canonical transforms (411)
      • 12.2.1 Inversion (413)
      • 12.2.2 Plancherel’s identity (413)
      • 12.2.3 Composition (413)
      • 12.2.4 Identity limit (414)
      • 12.2.5 Observations (415)
    • 12.3 The Laplace transform (415)
      • 12.3.1 Existence of the Laplace transform (416)
      • 12.3.2 Linearity of the Laplace transform (418)
      • 12.3.3 Time shift (418)
      • 12.3.4 Scaling property (418)
      • 12.3.5 Differentiation in the time domain (418)
      • 12.3.6 Inverse transform (419)
    • 12.4 Fractional Fourier transform (420)
    • 12.5 Mixed domain transforms (422)
    • 12.6 The wavelet transform (426)
    • 12.7 The Wigner transform (429)
    • 12.8 Focus: the Radon transform and computed axial tomography (CAT) (430)
    • 12.9 Additional reading (436)
    • 12.10 Exercises (436)
  • 13 Discrete transforms (439)
    • 13.1 Introduction: the sampling theorem (439)
    • 13.2 Sampling and the Poisson sum formula (443)
    • 13.3 The discrete Fourier transform (447)
    • 13.4 Properties of the DFT (450)
      • 13.4.1 Nyquist frequency (450)
      • 13.4.2 Shift in the n-domain (451)
      • 13.4.3 Shift in the k-domain (452)
    • 13.5 Convolution (452)
    • 13.6 Fast Fourier transform (453)
    • 13.7 The z-transform (457)
      • 13.7.1 Relation to Laplace and Fourier transform (459)
      • 13.7.2 Convolution theorem (462)
      • 13.7.3 Time shift (463)
      • 13.7.4 Initial and final values (463)
    • 13.8 Focus: z-transforms in the numerical solution of Maxwell's equations (465)
    • 13.9 Focus: the Talbot effect (469)
    • 13.10 Exercises (476)
  • 14 Ordinary differential equations (478)
    • 14.1 Introduction: the classic ODEs (478)
    • 14.2 Classification of ODEs (479)
    • 14.3 Ordinary differential equations and phase space (480)
    • 14.4 First-order ODEs (489)
      • 14.4.1 Separable equation (489)
      • 14.4.2 Exact equation (491)
      • 14.4.3 Linear equation (493)
    • 14.5 Second-order ODEs with constant coefficients (494)
    • 14.6 The Wronskian and associated strategies (496)
    • 14.7 Variation of parameters (498)
    • 14.8 Series solutions (500)
    • 14.9 Singularities, complex analysis, and general Frobenius solutions (501)
    • 14.10 Integral transform solutions (505)
    • 14.11 Systems of differential equations (506)
    • 14.12 Numerical analysis of differential equations (508)
      • 14.12.1 Euler’s method (510)
      • 14.12.2 Trapezoidal method and implicit methods (512)
      • 14.12.3 Runge–Kutta methods (514)
      • 14.12.4 Higher-order equations and stiff equations (517)
      • 14.12.5 Observations (520)
    • 14.13 Additional reading (521)
    • 14.14 Exercises (521)
  • 15 Partial differential equations (525)
    • 15.1 Introduction: propagation in a rectangular waveguide (525)
    • 15.2 Classification of second-order linear PDEs (528)
      • 15.2.1 Classification of second-order PDEs in two variables with constant coefficients (529)
      • 15.2.2 Classification of general second-order PDEs (532)
      • 15.2.3 Auxiliary conditions for second-order PDEs, existence, and uniqueness (535)
    • 15.3 Separation of variables (537)
    • 15.4 Hyperbolic equations (539)
    • 15.5 Elliptic equations (545)
    • 15.6 Parabolic equations (550)
    • 15.7 Solutions by integral transforms (554)
    • 15.8 Inhomogeneous problems and eigenfunction solutions (558)
    • 15.9 Infinite domains the d'Alembert solution (559)
    • 15.10 Method of images (564)
    • 15.11 Additional reading (565)
    • 15.12 Exercises (565)
  • 16 Bessel functions (570)
    • 16.1 Introduction: propagation in a circular waveguide (570)
    • 16.2 Bessel's equation and series solutions (572)
    • 16.3 The generating function (575)
    • 16.4 Recurrence relations (577)
    • 16.5 Integral representations (580)
    • 16.6 Hankel functions (584)
    • 16.7 Modified Bessel functions (585)
    • 16.8 Asymptotic behavior of Bessel functions (586)
    • 16.9 Zeros of Bessel functions (587)
    • 16.10 Orthogonality relations (589)
    • 16.11 Bessel functions of fractional order (592)
    • 16.12 Addition theorems, sum theorems, and product relations (596)
    • 16.13 Focus: nondiffracting beams (599)
    • 16.14 Additional reading (602)
    • 16.15 Exercises (602)
  • 17 Legendre functions and spherical harmonics (605)
    • 17.1 Introduction: Laplace's equation in spherical coordinates (605)
    • 17.2 Series solution of the Legendre equation (607)
    • 17.3 Generating function (609)
    • 17.4 Recurrence relations (610)
    • 17.5 Integral formulas (612)
    • 17.6 Orthogonality (614)
    • 17.7 Associated Legendre functions (617)
    • 17.8 Spherical harmonics (622)
    • 17.9 Spherical harmonic addition theorem (625)
    • 17.10 Solution of PDEs in spherical coordinates (628)
    • 17.11 Gegenbauer polynomials (630)
    • 17.12 Focus: multipole expansion for static electric fields (631)
    • 17.13 Focus: vector spherical harmonics and radiation fields (634)
    • 17.14 Exercises (638)
  • 18 Orthogonal functions (642)
    • 18.1 Introduction: Sturm--Liouville equations (642)
    • 18.2 Hermite polynomials (647)
      • 18.2.1 Series solution (647)
      • 18.2.2 Generating function (649)
      • 18.2.3 Recurrence relations (649)
      • 18.2.4 Orthogonality (650)
      • 18.2.5 The quantum harmonic oscillator (651)
      • 18.2.6 Hermite–Gauss laser beams (653)
    • 18.3 Laguerre functions (661)
      • 18.3.1 Series solution (661)
      • 18.3.2 Generating function (662)
      • 18.3.3 Recurrence relations (663)
      • 18.3.4 Associated Laguerre functions (664)
      • 18.3.5 Wavefunction of the hydrogen atom (665)
      • 18.3.6 Laguerre–Gauss laser beams (667)
    • 18.4 Chebyshev polynomials (670)
      • 18.4.1 Polynomials of the second kind (670)
      • 18.4.2 Polynomials of the first kind (672)
    • 18.5 Jacobi polynomials (674)
    • 18.6 Focus: Zernike polynomials (675)
    • 18.7 Additional reading (682)
    • 18.8 Exercises (682)
  • 19 Green's functions (685)
    • 19.1 Introduction: the Huygens--Fresnel integral (685)
    • 19.2 Inhomogeneous Sturm--Liouville equations (689)
    • 19.3 Properties of Green's functions (694)
    • 19.4 Green's functions of second-order PDEs (696)
      • 19.4.1 Elliptic equation: Poisson’s equation (696)
      • 19.4.2 Elliptic equation: Helmholtz equation (697)
      • 19.4.3 Hyperbolic equation: wave equation (700)
      • 19.4.4 Parabolic equation: diffusion equation (702)
    • 19.5 Method of images (705)
    • 19.6 Modal expansion of Green's functions (709)
    • 19.7 Integral equations (713)
      • 19.7.1 Types of linear integral equation (713)
      • 19.7.2 Solution of basic linear integral equations (715)
      • 19.7.3 Liouville–Neumann series (716)
      • 19.7.4 Hermitian kernels and Mercer’s theorem (719)
    • 19.8 Focus: Rayleigh--Sommerfeld diffraction (721)
    • 19.9 Focus: dyadic Green's function for Maxwell's equations (724)
    • 19.10 Focus: Scattering theory and the Born series (729)
    • 19.11 Exercises (732)
  • 20 The calculus of variations (735)
    • 20.1 Introduction: principle of Fermat (735)
    • 20.2 Extrema of functions and functionals (738)
    • 20.3 Euler's equation (741)
    • 20.4 Second form of Euler's equation (747)
    • 20.5 Calculus of variations with several dependent variables (750)
    • 20.6 Calculus of variations with several independent variables (752)
    • 20.7 Euler's equation with auxiliary conditions: Lagrange multipliers (754)
    • 20.8 Hamiltonian dynamics (759)
    • 20.9 Focus: aperture apodization (762)
    • 20.10 Additional reading (765)
    • 20.11 Exercises (765)
  • 21 Asymptotic techniques (768)
    • 21.1 Introduction: foundations of geometrical optics (768)
    • 21.2 Definition of an asymptotic series (773)
    • 21.3 Asymptotic behavior of integrals (776)
    • 21.4 Method of stationary phase (783)
    • 21.5 Method of steepest descents (786)
    • 21.6 Method of stationary phase for double integrals (791)
    • 21.7 Additional reading (792)
    • 21.8 Exercises (793)
  • Appendix A: The gamma function (795)
    • A.1 Definition (795)
    • A.2 Basic properties (796)
    • A.3 Stirling's formula (798)
    • A.4 Beta function (799)
    • A.5 Useful integrals (800)
  • Appendix B: Hypergeometric functions (803)
    • B.1 Hypergeometric function (804)
    • B.2 Confluent hypergeometric function (805)
    • B.3 Integral representations (805)
  • References (807)
  • Index (813)
Loading...