کتابخانه مرکزی دانشگاه صنعتی شریف
    • [نمايش بزرگتر]
    • [نمايش کوچکتر]
  • صفحه 
     از  0
  • [صفحه قبل]
  • [صفحه بعد]
  • [نمایش تمام صفحه]
  • [بستن]
 
Dynamic modeling of environmental systems
Deaton, Michael L.

اطلاعات کتابشناختی

Dynamic modeling of environmental systems
Author :   Deaton, Michael L.
Publisher :   Springer,
Pub. Year  :   2000
Subjects :   Environmental sciences-- Computer simulation. Environmental sciences-- Mathematical...
Call Number :   ‭GE 45 .D37 .D43 2000

جستجو در محتوا

ترتيب

فهرست مطالب

  • Chapter 1. Modeling and simulation modeling (18)
    • 1.1. Types of models (19)
    • 1.2. Analytical vs. Simulation modeling (19)
      • The limits of analytical modeling: queuing theory (21)
      • Advantages of simulation modeling (24)
    • 1.3. Applications of simulation modeling. Level of abstraction. Methods (25)
  • Chapter 2. The three methods in simulation modeling (27)
    • 2.1. System dynamics (27)
      • Example 2.1: New product diffusion (28)
      • Underlying mathematics and simulation engine (32)
      • Abstraction level (33)
      • Software tools (33)
    • 2.2. Discrete event modeling (33)
      • Example 2.2: Bank (34)
      • Abstraction level (35)
      • Underlying mathematics and simulation engine (36)
      • Software tools (36)
    • 2.3. Agent based modeling (36)
      • Example 2.3: Agent based epidemic model (37)
      • Abstraction level (40)
      • For those who have read books and papers on agent based modeling (41)
      • Underlying mathematics and simulation engine (41)
      • Software tools (42)
  • Chapter 3. Agent based modeling. Technology overview (43)
    • 3.1. Who are the agents? (43)
      • Who are the agents in an American automotive market model? (43)
    • 3.2. Agent based modeling and object-oriented design (45)
      • OO modeling in AnyLogic (47)
    • 3.3. Time in agent based models (49)
    • 3.4. Space in agent based models (51)
    • 3.5. Discrete space (52)
      • Example 3.1: Schelling segregation (55)
      • Example 3.2: Conway’s Game of Life (57)
      • Example 3.3: Wildfire (58)
      • Discrete space API (64)
    • 3.6. Continuous 2D and 3D space (65)
      • Movement in continuous space (67)
      • Example 3.4: Air defense system (68)
      • Example 3.5: Agent leaving a movement trail (80)
      • Continuous space API (83)
    • 3.7. Networks and links (84)
      • Standard networks (84)
      • Example 3.6: Periodic repair of a standard network (86)
      • Example 3.7: Custom network built using standard connections (88)
      • Fully connected networks (90)
      • Network and layout-related API (90)
      • Unidirectional, temporary, and other custom types of links (91)
      • Example 3.8: Kinship modeled using custom links (92)
      • A note on vertical links in hierarchical models (96)
      • Using ports to connect agents (96)
    • 3.8. Communication between agents. Message passing (97)
      • Synchronous and asynchronous communication (97)
      • API for message passing (98)
      • Message handling (99)
      • Other types of inter-agent communication (100)
    • 3.9. Dynamic creation and destruction of agents (100)
    • 3.10. Statistics on agent populations (102)
      • Example 3.9: Kinship model with standard statistics (102)
      • Example 3.10: Kinship model with dynamic histograms (104)
      • Customized high performance statistics (105)
      • Example 3.11: Kinship model with customized statistics (106)
    • 3.11. Condition-triggered events and transitions in agents (107)
  • Chapter 4. How to build agent based models. Field service example (109)
    • 4.1. The problem statement (109)
    • 4.2. Phase 1. Can be done on paper (111)
      • Who are the agents? (111)
      • Equipment unit agent (111)
      • Service crew agent (113)
      • Agent communication. Message sequence diagrams (115)
      • Space and other things shared by all agents (117)
    • 4.3. Phase 2. The model in AnyLogic. The first run (118)
      • The model structure and the top level object Main (118)
      • The EquipmentUnit agent (119)
      • The ServiceCrew agent (121)
      • Animation (123)
      • The first run (123)
      • Discussion and next steps (124)
    • 4.4. Phase 3. The missing functionality (124)
      • Maintenance, age, and failure rate (125)
      • Scheduling maintenance. Handling requests of two types (126)
      • Discussion. Code in the model (129)
    • 4.5. Phase 4. Model output. Statistics. Cost and revenue calculation (130)
      • Equipment availability and service crew utilization (131)
      • Cost and revenue (135)
    • 4.6. Phase 5. Control panel. Running the flight simulator (137)
      • Design of control panel (137)
      • Changing the number of service crews (138)
      • Equipment replacement policy (139)
      • Running the flight simulator (139)
    • 4.7. Phase 6. Using the optimizer to find the best solution (141)
      • Preparing the model for optimization (141)
      • Setting up the optimization experiment (142)
      • Optimization run (143)
    • 4.8. Assumptions (145)
    • 4.9. Bonus phase. 3D animation (146)
    • 4.10. Bonus discussion. Could we model this in discrete event style? (148)
  • Chapter 5. System dynamics and dynamic systems (152)
    • 5.1. How to draw stock and flow diagrams (152)
      • Drawing stocks and flows (152)
      • Drawing variables, dependency links, polarities, and loop types (154)
      • Naming conventions for system dynamics variables (155)
      • Layout of large models. "Sectors" and shadow variables (155)
    • 5.2. Equations (156)
      • Using Java in SD equations (159)
      • "Constant variables" and parameters (159)
      • Units and unit checking (160)
    • 5.3. Example: Population and carrying capacity (161)
      • Phase 1: Unlimited resources. Positive feedback. Exponential growth (161)
      • Customizing the dataset collection (165)
      • Phase 2: Crowding affects lifetime. Negative feedback. S-shaped growth (165)
      • Phase 3: Crowding affects births (167)
      • Phase 4: Negative feedback with delay. Overshoot and oscillation (169)
      • Specifying units and performing unit checking (170)
    • 5.4. Other types of experiments. Interactive games (171)
      • Example 5.1: New product diffusion - compare runs (171)
      • Example 5.2: New product diffusion - sensitivity analysis (173)
      • Example 5.3: Epidemic model – calibration (174)
      • Example 5.4: Epidemic model - instant charts (177)
      • Example 5.5: Stock management game (179)
    • 5.5. Exporting the model and publishing it on the web (183)
  • Chapter 6. Multi-method modeling (186)
    • 6.1. Architectures (186)
      • The choice of model architecture and methods (188)
    • 6.2. Technical aspect of combining modeling methods (189)
      • Examples 5.1 - 5.21: Combining modeling methods (189)
      • System dynamics -> discrete elements (189)
      • Discrete elements -> system dynamics (191)
      • Agent based <-> discrete event (197)
      • Referencing model elements located in different active objects (200)
      • The simulation performance of multi-method models (201)
    • 6.3. Examples (202)
      • Example 6.22: Epidemic and clinic (202)
      • Example 6.23: Consumer market and supply chain (208)
      • Example 6.24: Product portfolio and investment policy (212)
    • 6.4. Discussion (223)
  • Chapter 7. Designing state-based behavior: statecharts (224)
    • 7.1. What is a statechart? (224)
      • Example 7.1: A laptop running on a battery (224)
      • How do statecharts differ from action charts and flowcharts? (225)
    • 7.2. Drawing statecharts (226)
      • Simple states (226)
      • Transitions (227)
      • Statechart entry point (227)
      • Composite states (228)
      • History state (228)
      • Final state (229)
    • 7.3. State transitions: triggers, guards, and actions (230)
      • Which transitions are active? (230)
      • Trigger types (230)
      • Timeout expressions (231)
      • Transitions triggered by messages (232)
      • Sending messages to a statechart (233)
      • Guards of transitions (234)
      • Transitions with branches (235)
      • Internal transitions (235)
      • Order of action execution (236)
      • Synchronous vs. asynchronous transitions (237)
    • 7.4. Statechart-related API (238)
    • 7.5. Viewing and debugging the statecharts at runtime (239)
    • 7.6. Statecharts for people’s lives and behavior (239)
      • Example 7.2: Life phases (239)
      • Example 7.3: Adoption and diffusion (240)
      • Example 7.4: Disease diffusion (241)
      • Example 7.5: Purchase behavior with a choice of two competing products (242)
    • 7.7. Statecharts for physical objects (243)
      • Example 7.6: Generic resource with breakdowns and repairs (243)
      • Example 7.7: Delivery truck (244)
      • Example 7.8: Aircraft maintenance checks (245)
    • 7.8. Statecharts for products and projects (246)
      • Example 7.9: Product life cycle, including NPD (246)
      • Example 7.10: Pharmaceutical NPD pipeline (247)
    • 7.9. Statecharts for timing (248)
      • Example 7.11: Statechart for shop working hours (248)
  • Chapter 8. Discrete events and Event model object (250)
    • 8.1. Discrete events (250)
      • The terminology (250)
      • Discrete events: approximation of real world continuous processes (250)
      • Discrete event management inside AnyLogic engine (251)
    • 8.2. Event – the simplest low level model object (252)
      • Example 8.1: Event writes to the model log every time unit (254)
      • Example 8.2: Event generates new agents (255)
      • Events triggered by a condition (256)
      • Example 8.3: Event waits on a stock reaching a certain level (257)
      • Example 8.4: Automatic shutdown after a period of inactivity (258)
      • Example 8.5: Event slows down the simulation on a particular date (259)
      • Event API (260)
    • 8.3. Dynamic events (261)
      • Example 8.6: Product delivery (262)
      • API related to dynamic events (264)
  • Chapter 9. Rails and trains (265)
    • 9.1. Defining the rail topology (265)
      • Example 9.1: A very simple rail yard (266)
      • 3D animation of rail yards (268)
      • Creating rail yards programmatically (269)
      • Example 9.2: Creating a rail yard by code (269)
      • Java class Track (271)
      • Java class Switch (272)
    • 9.2. Defining the operation logic of the rail model (273)
      • Example 9.3: Train stop (274)
      • Example 9.4: Ensuring safe movement of trains (279)
      • Example 9.5: Simple classification yard (283)
      • Example 9.6: Airport shuttle train (featuring AnyLogic Pedestrian Library) (290)
      • Java class Train (subclass of Entity) (293)
      • Java class RailCar (295)
  • Chapter 10. Java for AnyLogic users (298)
    • 10.1. Primitive data types (298)
    • 10.2. Classes (299)
      • Class as grouping of data and methods. Objects as instances of class (300)
      • Inheritance. Subclass and super class (301)
      • Classes and objects in AnyLogic models (302)
    • 10.3. Variables (local variables and class fields) (302)
      • Local (temporary) variables (303)
      • Class variables (fields) (303)
    • 10.4. Functions (methods) (304)
      • Standard and system functions (305)
      • Functions of the model elements (306)
      • Defining your own function (308)
    • 10.5. Expressions (310)
      • Arithmetic expressions (310)
      • Relations and equality (311)
      • Logical expressions (311)
      • String expressions (312)
      • Conditional operator ?: (312)
    • 10.6. Java arrays and collections (313)
      • Arrays (314)
      • Collections (316)
      • Replicated active objects are collections too (318)
    • 10.7. Naming conventions (319)
    • 10.8. Statements (321)
      • Variable declaration (322)
      • Function call (322)
      • Assignment (323)
      • If-then-else (323)
      • Switch (324)
      • For loop (325)
      • While loop (326)
      • Block {…} and indentation (327)
      • Return statement (328)
      • Comments (328)
    • 10.9. Where am I and how do I get to…? (330)
    • 10.10. Viewing Java code generated by AnyLogic (332)
    • 10.11. Creating your Java classes within AnyLogic model (333)
      • Inner classes (335)
    • 10.12. Linking external Java modules (JAR files) (336)
  • Chapter 11. Exchanging data with external world (339)
    • 11.1. Text files (339)
      • Example 11.1: Using text file as a log (340)
      • Example 11.2: Reading table function from a text file (341)
      • Example 11.3: Reading agent parameters from a CSV file (343)
    • 11.2. Excel spreadsheets (345)
      • Example 11.4: Reading data of various types from fixed cells in Excel (346)
      • Example 11.5: Reading model parameters from Excel using Java reflection (348)
      • Example 11.6: Displaying the model output as a chart in Excel (350)
    • 11.3. Databases (352)
      • SQL queries (353)
      • AnyLogic database connectivity objects (356)
      • Example 11.7: Loading data from a database and using ResultSet (357)
      • Example 11.8: Creating agent populations parameterized from a database (359)
      • Example 11.9: Dumping simulation output into a database table (362)
      • Example 11.10: Using prepared statement when writing to databases (364)
    • 11.4. Working with the clipboard (365)
      • Example 11.11: Working with clipboard (365)
    • 11.5. Standard output, the model log, and command line arguments (367)
  • Chapter 12. Presentation and animation: working with shapes, groups, colors (368)
    • 12.1. Drawing and editing shapes (368)
      • Polylines and curves (369)
      • Arcs (370)
      • Text (370)
      • Images (371)
      • Z-Order (372)
      • Selecting hidden shapes (373)
      • Coordinates and the grid (373)
      • Copying shapes (374)
      • Locking shapes – preventing selection by mouse (375)
      • General properties of graphical shapes (376)
      • Advanced properties of graphical shapes (376)
    • 12.2. Grouping shapes (377)
      • 3D Groups (380)
      • Working with the group contents dynamically using API (381)
      • On draw extension point – execute custom code on each frame (381)
      • Groups in the project tree (382)
      • Top level groups for active object presentation and icon (382)
    • 12.3. Animation principles. Dynamic properties of shapes (382)
      • Dynamic properties of shapes (383)
      • Example 12.1: Commodity price change animation (383)
      • Example 12.2: Elevator doors animation (385)
      • Example 12.3: Stock of money animation (386)
      • Example 12.4: Missile attack animation (388)
      • Animation frames (390)
    • 12.4. Replicated shapes (390)
      • Example 12.5: Drawing seats in a movie theater (391)
      • Example 12.6: Selling seats in the movie theater (393)
      • Example 12.7: Drawing a flower (394)
      • Example 12.8: Product portfolio bubble chart (BCG chart) (395)
    • 12.5. Shapes’ API (397)
      • Example 12.9: Using color to show the current state of a statechart (398)
      • Example 12.10: Show/hide a callout (399)
      • Example 12.11: Read graphics from a text file (400)
      • Example 12.12: Find all red circles (402)
      • Example 12.13: Resize the red circles (403)
      • API of non-persistent shapes (403)
      • AnyLogic Java class hierarchy for shapes (403)
    • 12.6. Colors and textures (404)
      • Example 12.14: Choosing appropriate colors for an arbitrary number of objects (405)
      • Transparency (405)
      • Example 12.15: Using transparency to show coverage zone (406)
      • Example 12.16: Show population density using color interpolation (407)
  • Chapter 13. Designing interactive models: using controls (409)
    • Example 13.1: Slider linked to a model parameter (410)
    • Example 13.2: Buttons changing the parameter value (411)
    • Example 13.3: Edit box linked to a parameter of embedded object (412)
    • Example 13.4: Radio buttons changing the view mode (413)
    • Example 13.5: Combo box controlling the simulation speed (414)
    • Example 13.6: File chooser for text files (415)
    • Indivisibility of control actions and model events (416)
    • 13.1. Dynamic properties of controls (416)
      • Example 13.7: Radio buttons enabling/disabling other controls (416)
      • Example 13.8: Keeping controls in the top left corner of the window (417)
      • Example 13.9: Replicated button (418)
    • 13.2. Controls' API (419)
    • 13.3. Handling mouse clicks (419)
      • Example 13.10: Hyper link menu to navigate between view areas (420)
      • Example 13.11: Creating dots at the click coordinates (421)
      • Example 13.12: Catching mouse clicks anywhere on the canvas (422)
  • Chapter 14. 3D animation (423)
    • Example 14.1: A very simple model with 3D animation (424)
    • 14.1. Primitive 3D shapes (425)
    • 14.2. 3D groups and rotation (428)
      • Example 14.2: Rotation in 3D – a sign on two posts (428)
      • Example 14.3: Bridge crane 3D (429)
    • 14.3. Standard and imported 3D graphics (431)
      • Using standard 3D graphics (431)
      • Using external 3D graphics (431)
    • 14.4. Hierarchical 3D animations. Embedded 3D presentation (432)
    • 14.5. 3D Windows (433)
      • Navigation in the 3D scene at runtime (434)
      • Multiple 3D views (434)
    • 14.6. Cameras (435)
      • Example 14.4: A very simple model with multiple 3D windows and cameras (435)
      • Example 14.5: Camera on a moving object (436)
    • 14.7. Lights (438)
      • Example 14.6: Examples of Lights in 3D Scene (440)
  • Chapter 15. Randomness in AnyLogic models (444)
    • 15.1. Probability distributions (444)
      • Probability distribution functions (445)
      • Distribution fitting (448)
      • Custom (empirical) distributions (448)
    • 15.2. Sources of randomness in the model (450)
      • Randomness in process models (451)
      • Randomness in agent based models (452)
      • Example 15.1: Agents randomly distributed within a freeform area (453)
      • Example 15.2: Agents randomly distributed over a finite set of locations (454)
      • Randomness in system dynamics models (456)
      • Example 15.3: Stock price fluctuations in a system dynamics model (456)
      • Randomness in AnyLogic simulation engine (457)
    • 15.3. Random number generators. Reproducible and unique experiments (457)
      • Random number generators (457)
      • The seed. Reproducible and unique experiments (459)
      • Example 15.4: Reproducible experiment with a stochastic process model (459)
  • Chapter 16. Model time, date and calendar. Virtual and real time (462)
    • 16.1. The model time (462)
      • Time units (463)
      • Developing models independent of time unit settings (464)
    • 16.2. Date and calendar (464)
      • Finding out the current date, day of week, hour of day, etc. (465)
      • Constructing dates. Converting the model date to the model time and vice versa (466)
      • Specifying timeouts and delays in days, months, years (467)
    • 16.3. Virtual and real-time execution modes (468)
      • Execution mode API (469)
  • References (472)
Loading...