کتابخانه مرکزی دانشگاه صنعتی شریف
    • [نمايش بزرگتر]
    • [نمايش کوچکتر]
  • صفحه 
     از  0
  • [صفحه قبل]
  • [صفحه بعد]
  • [نمایش تمام صفحه]
  • [بستن]
 
Process modeling, simulation, and control for chemical engineers
Luyben, William L.

اطلاعات کتابشناختی

Process modeling, simulation, and control for chemical engineers
Author :   Luyben, William L.
Publisher :   McGraw-Hill,
Pub. Year  :   1990
Subjects :   Chemical processes-- Mathematical models. Chemical processes-- Data processing. Chemical...
Call Number :   ‭TP 155 .7 .L88 1990

جستجو در محتوا

ترتيب

فهرست مطالب

  • Title Page (5)
  • Copyright Page (6)
  • Contents (7)
  • Preface (11)
  • Part I Standard Course- Fundamentals and Typical Phenomena (13)
    • Chapter 1 Fundamentals of EMTP (15)
      • 1.1 Function and Composition of EMTP (15)
        • 1.1.1 Lumped Parameter RLC (15)
        • 1.1.2 Transmission Line (16)
        • 1.1.3 Transformer (18)
        • 1.1.4 Nonlinear Element (18)
        • 1.1.5 Arrester (18)
        • 1.1.6 Switch (19)
        • 1.1.7 Voltage and Current Sources (19)
        • 1.1.8 Generator and Rotating Machine (19)
        • 1.1.9 Control (19)
        • 1.1.10 Support Routines (19)
      • 1.2 Features of the Calculation Method (20)
        • 1.2.1 Formulation of the Main Circuit (20)
        • 1.2.2 Calculation in TACS (24)
        • 1.2.3 Features of EMTP (25)
      • References (28)
    • Chapter 2 Modeling of System Components (29)
      • 2.1 Overhead Transmission Lines and Underground Cables (29)
        • 2.1.1 Overhead Transmission Line—Line Constants (29)
        • 2.1.2 Underground Cables—Cable Parameters (49)
      • 2.2 Transformer (58)
        • 2.2.1 Single-Phase Two-Winding Transformer (58)
        • 2.2.2 Single-Phase Three-Winding Transformer (62)
        • 2.2.3 Three-Phase One-Core Transformer—Three Legs or Five Legs (65)
        • 2.2.4 Frequency and Transformer Modeling (67)
    • Chapter 3 Transient Currents in Power Systems (69)
      • 3.1 Short-Circuit Currents (69)
      • 3.2 Transformer Inrush Magnetizing Current (72)
      • 3.3 Transient Inrush Currents in Capacitive Circuits (74)
      • Appendix 3.A: Example of ATPDraw Sheets—Data3-02.acp (76)
      • Reference (76)
    • Chapter 4 Transient at Current Breaking (77)
      • 4.1 Short-Circuit Current Breakings (78)
      • 4.2 Capacitive Current Switching (83)
        • 4.2.1 Switching of Capacitive Current of a No-Load Overhead Transmission Line (84)
        • 4.2.2 Switching of Capacitive Current of a Cable (87)
        • 4.2.3 Switching of Capacitive Current of a Shunt Capacitor Bank (88)
      • 4.3 Inductive Current Switching (90)
        • 4.3.1 Current Chopping Phenomenon (90)
        • 4.3.2 Reignition (91)
        • 4.3.3 High-Frequency Extinction and Multiple Reignition (92)
      • 4.4 TRV with Parallel Capacitance in SLF Breaking (92)
      • Appendix 4.A: Current Injection to Various Circuit Elements (96)
      • Appendix 4.B: TRV Calculation, Including ITRV—Current Injection is Applied for TRV Calculation (103)
      • Appendix 4.C: 550 kV Line Normal Breaking (109)
      • Appendix 4.D: 300 kV, 150 MVA Shunt Reactor Current Breaking—Current Chopping—Reignition—HF Current Interruption (112)
      • References (115)
    • Chapter 5 Black Box Arc Modeling (117)
      • 5.1 Mayr Arc Model (118)
        • 5.1.1 Analysis of Phenomenon of Short-Line Fault Breaking (118)
        • 5.1.2 Analysis of Phenomenon of Shunt Reactor Switching (122)
      • 5.2 Cassie Arc Model (124)
        • 5.2.1 Analysis of Phenomenon of Current Zero Skipping (125)
      • Appendix 5.A: Mayr Arc Model Calculating SLF Breaking, 300 kV, 50 kA, L90 Condition (130)
      • Appendix 5.B: Zero Skipping Current Breaking Near Generator—Fault Current Lasting (136)
      • Appendix 5.C: Zero Skipping Current Breaking Near Generator—Dynamic Arc Introduced, Still Nonbreaking (143)
    • Chapter 6 Typical Power Electronics Circuits in Power Systems (147)
      • 6.1 General (147)
      • 6.2 HVDC Converter/Inverter Circuits (147)
      • 6.3 Static Var Compensator/Thyristor-Controlled Inductor (152)
      • 6.4 PWM Self-Communicated Type Inverter Applying the Triangular Carrier Wave Shape Principle—Applied to SVG (Static Var Generator) (154)
      • Appendix 6.A: Example of ATPDraw Picture (159)
      • Reference (160)
  • Part II Advanced Course- Special Phenomena and Various Applications (161)
    • Chapter 7 Special Switching (163)
      • 7.1 Transformer-Limited Short-Circuit Current Breaking (163)
      • 7.2 Transformer Winding Response to Very Fast Transient Voltage (164)
      • 7.3 Transformer Magnetizing Current under Geomagnetic Storm Conditions (168)
      • 7.4 Four-Armed Shunt Reactor for Suppressing Secondary Arc in Single-Pole Rapid Reclosing (171)
      • 7.5 Switching Four-Armed Shunt Reactor Compensated Transmission Line (174)
      • References (175)
    • Chapter 8 Synchronous Machine Dynamics (177)
      • 8.1 Synchronous Machine Modeling and Machine Parameters (177)
      • 8.2 Some Basic Examples (179)
        • 8.2.1 No-Load Transmission Line Charging (179)
        • 8.2.2 Power Flow Calculation (181)
        • 8.2.3 Sudden Short-Circuiting (184)
      • 8.3 Transient Stability Analysis Applying the Synchronous Machine Model (188)
        • 8.3.1 Classic Analysis (Equal-Area Method) and Time Domain Analysis (EMTP) (188)
        • 8.3.2 Detailed Transients by Time Domain Analysis: ATP-EMTP (192)
        • 8.3.3 Field Excitation Control (195)
        • 8.3.4 Back-Swing Phenomenon (198)
      • Appendix 8.A: Short-Circuit Phenomena Observation in d-q Domain Coordinate (202)
      • Appendix 8.B Starting as an Induction Motor (205)
      • Appendix 8.C Modeling by the No. 19 Universal Machine (207)
      • Appendix 8.D Example of ATPDraw Picture File: Draw8-111.acp (Figure D8.1).15 (210)
      • References (210)
    • Chapter 9 Induction Machine, Doubly Fed Machine, Permanent Magnet Machine (211)
      • 9.1 Induction Machine (Cage Rotor Type) (211)
        • 9.1.1 Machine Data for EMTP Calculation (212)
        • 9.1.2 Zero Starting (213)
        • 9.1.3 Mechanical Torque Load Application (216)
        • 9.1.4 Multimachines (218)
        • 9.1.5 Motor Terminal Voltage Change (220)
        • 9.1.6 Driving by Variable Voltage and Frequency Source (VVVF) (221)
      • 9.2 Doubly Fed Machine (224)
        • 9.2.1 Operation Principle (224)
        • 9.2.2 Steady-State Calculation (225)
        • 9.2.3 Flywheel Generator Operation (225)
      • 9.3 Permanent Magnet Machine (227)
        • 9.3.1 Zero Starting (Starting by Direct AC Voltage Source Connection) (229)
        • 9.3.2 Calculation of Transient Phenomena (229)
      • Appendix 9.A: Doubly Fed Machine Vector Diagrams (230)
      • Appendix 9.B: Example of ATPDraw Picture (231)
    • Chapter 10 Machine Drive Applications (233)
      • 10.1 Small-Scale System Composed of a Synchronous Generator and Induction Motor (233)
        • 10.1.1 Initialization (233)
        • 10.1.2 Induction Motor Starting (235)
        • 10.1.3 Application of AVR (237)
        • 10.1.4 Inverter-Controlled VVVF Starting (238)
      • 10.2 Cycloconverter (245)
      • 10.3 Cycloconverter-Driven Synchronous Machine (249)
        • 10.3.1 Application of Sudden Mechanical Load (249)
        • 10.3.2 Quick Starting of a Cycloconverter-Driven Synchronous Motor (254)
        • 10.3.3 Comparison with the Inverter-Driven System (257)
      • 10.4 Flywheel Generator: Doubly Fed Machine Application for Transient Stability Enhancement (260)
        • 10.4.1 Initialization (261)
        • 10.4.2 Flywheel Activity in Transient Stability Enhancement (266)
        • 10.4.3 Active/Reactive Power Effect (266)
        • 10.4.4 Discussion (270)
      • Appendix 10.A: Example of ATPDraw Picture (272)
      • Reference (278)
  • Index (279)
  • EULA (281)
Loading...