درحال بارگذاري...
جستجو
ایمیل دوست | |
نام شما | |
ایمیل شما | |
کد مقابل را وارد نمایید | |
این صفحه برای دوست شما با موفقیت ارسال شد.
1794 مرتبه مشاهده شده
Heat conduction
Jiji, Latif M
- ISBN:3642012663
- ISBN:9783642012662
- ISBN:3642012671
- ISBN:9783642012679
- Call Number : QC 321 .J555 2009
- Main Entry: Jiji, Latif M (Latif Menashi)
- Title:Heat conduction [electronic resource] / Latif M. Jiji.
- Edition:3rd ed.
- Publisher:Berlin : Springer, 2009.
- Physical Description: xv, 418 p. : ill
- Notes:Description based on print version record
- Notes:Includes bibliographical references and index
- Subject:Heat -- Conduction -- Mathematical models.
- front-matter
- Chapter 01
- BASIC CONCEPTS
- Examples of Conduction Problems
- Focal Point in Conduction Heat Transfer
- Fourier's Law of Conduction
- Conservation of Energy: Differential Formulation of the Heat Conduction Equation in Rectangular Coordinates
- The Heat Conduction Equation in Cylindrical and Spherical Coordinates
- Boundary Conditions
- Problem Solving Format
- Units
- REFERENCES
- BASIC CONCEPTS
- Chapter 02
- ONE-DIMENSIONAL STEADY STATE CONDUCTION
- Examples of One-dimensional Conduction
- Extended Surfaces: Fins
- The Function of Fins
- Types of Fins
- Heat Transfer and Temperature Distribution in Fins
- The Fin Approximation
- The Fin Heat Equation: Convection at Surface
- Determination of $\frac{dA_{s}}{dx}$
- Boundary Conditions
- Determination of Fin Heat Transfer Rate $q_{f}$
- Steady State Applications: Constant Area Fins with Surface Convection
- Corrected Length $L_{c}$
- Fin Efficiency $\eta_{f}$
- Moving Fins
- Application of Moving Fins
- Variable Area Fins
- Bessel Differential Equations and Bessel Functions
- General Form of Bessel Equations
- Solutions: Bessel Functions
- Forms of Bessel Functions
- Special Closed-form Bessel Functions:$n = \frac{odd integer}{2}$
- Special Relations for n = 1, 2, 3, ….
- Derivatives and Integrals of Bessel Functions [2,3]
- Tabulation and Graphical Representation of Selected Bessel Functions
- Equidimensional (Euler) Equation
- Graphically Presented Solutions to Fin Heat Transfer Rate [5]
- REFERENCES
- ONE-DIMENSIONAL STEADY STATE CONDUCTION
- Chapter 03
- TWO-DIMENSIONAL STEADY STATE CONDUCTION
- The Heat Conduction Equation
- Method of Solution and Limitations
- Homogeneous Differential Equations and Boundary Conditions
- Sturm-Liouville Boundary-Value Problem: Orthogonality [1]
- Procedure for the Application of Separation of Variables Method
- Cartesian Coordinates: Examples
- Cylindrical Coordinates: Examples
- Integrals of Bessel Functions
- Non-homogeneous Differential Equations
- Non-homogeneous Boundary Conditions: The Method of Superposition
- REFERENCES
- TWO-DIMENSIONAL STEADY STATE CONDUCTION
- Chapter 04
- TRANSIENT CONDUCTION
- Simplified Model: Lumped-Capacity Method
- Transient Conduction in Plates
- Non-homogeneous Equations and Boundary Conditions
- Transient Conduction in Cylinders
- Transient Conduction in Spheres
- Time Dependent Boundary Conditions: Duhamel’s Superposition Integral
- Conduction in Semi-infinite Regions: The Similarity Method
- REFERENCES
- TRANSIENT CONDUCTION
- Chapter 05
- Chapter 06
- CONDUCTION WITH PHASE CHANGE: MOVING BOUNDARY PROBLEMS
- Introduction
- The Heat Equations
- Moving Interface Boundary Conditions
- Non-linearity of the Interface Energy Equation
- Non-dimensional Form of the Governing Equations: Governing Parameters
- Simplified Model: Quasi-Steady Approximation
- Exact Solutions
- Effect of Density Change on the Liquid Phase
- Radial Conduction with Phase Change
- Phase Change in Finite Regions
- REFERENCES
- CONDUCTION WITH PHASE CHANGE: MOVING BOUNDARY PROBLEMS
- Chapter 07
- Chapter 08
- Chapter 09
- Chapter 10
- Chapter 11
- back-matter