کتابخانه مرکزی دانشگاه صنعتی شریف
    • [نمايش بزرگتر]
    • [نمايش کوچکتر]
  • صفحه 
     از  0
  • [صفحه قبل]
  • [صفحه بعد]
  • [نمایش تمام صفحه]
  • [بستن]
 
Heat conduction
Jiji, Latif M

اطلاعات کتابشناختی

Heat conduction
Author :   Jiji, Latif M
Publisher :   Springer,
Pub. Year  :   2009
Subjects :   Heat -- Conduction -- Mathematical models.
Call Number :   ‭QC 321 .J555 2009

جستجو در محتوا

ترتيب

فهرست مطالب

  • front-matter (1)
  • Chapter 01 (14)
    • BASIC CONCEPTS (14)
      • Examples of Conduction Problems (14)
      • Focal Point in Conduction Heat Transfer (15)
      • Fourier's Law of Conduction (15)
      • Conservation of Energy: Differential Formulation of the Heat Conduction Equation in Rectangular Coordinates (18)
      • The Heat Conduction Equation in Cylindrical and Spherical Coordinates (22)
      • Boundary Conditions (23)
        • Surface Convection: Newton's Law of Cooling (23)
        • Surface Radiation: Stefan-Boltzmann Law (24)
        • Examples of Boundary Conditions (25)
      • Problem Solving Format (28)
      • Units (29)
      • REFERENCES (30)
  • Chapter 02 (37)
    • ONE-DIMENSIONAL STEADY STATE CONDUCTION (37)
      • Examples of One-dimensional Conduction (37)
      • Extended Surfaces: Fins (47)
        • The Function of Fins (47)
        • Types of Fins (47)
        • Heat Transfer and Temperature Distribution in Fins (48)
        • The Fin Approximation (49)
        • The Fin Heat Equation: Convection at Surface (50)
        • Determination of $\frac{dA_{s}}{dx}$ (52)
        • Boundary Conditions (53)
        • Determination of Fin Heat Transfer Rate $q_{f}$ (53)
        • Steady State Applications: Constant Area Fins with Surface Convection (54)
        • Corrected Length $L_{c}$ (57)
        • Fin Efficiency $\eta_{f}$ (57)
        • Moving Fins (58)
        • Application of Moving Fins (60)
        • Variable Area Fins (62)
      • Bessel Differential Equations and Bessel Functions (65)
        • General Form of Bessel Equations (65)
        • Solutions: Bessel Functions (65)
        • Forms of Bessel Functions (67)
        • Special Closed-form Bessel Functions:$n = \frac{odd integer}{2}$ (67)
        • Special Relations for n = 1, 2, 3, …. (68)
        • Derivatives and Integrals of Bessel Functions [2,3] (69)
        • Tabulation and Graphical Representation of Selected Bessel Functions (69)
      • Equidimensional (Euler) Equation (71)
      • Graphically Presented Solutions to Fin Heat Transfer Rate [5] (72)
      • REFERENCES (73)
  • Chapter 03 (85)
    • TWO-DIMENSIONAL STEADY STATE CONDUCTION (85)
      • The Heat Conduction Equation (85)
      • Method of Solution and Limitations (86)
      • Homogeneous Differential Equations and Boundary Conditions (86)
      • Sturm-Liouville Boundary-Value Problem: Orthogonality [1] (87)
      • Procedure for the Application of Separation of Variables Method (89)
      • Cartesian Coordinates: Examples (96)
      • Cylindrical Coordinates: Examples (110)
      • Integrals of Bessel Functions (115)
      • Non-homogeneous Differential Equations (116)
      • Non-homogeneous Boundary Conditions: The Method of Superposition (122)
      • REFERENCES (124)
  • Chapter 04 (132)
    • TRANSIENT CONDUCTION (132)
      • Simplified Model: Lumped-Capacity Method (132)
        • Criterion for Neglecting Spatial Temperature Variation (132)
        • Lumped-Capacity Analysis (134)
      • Transient Conduction in Plates (137)
      • Non-homogeneous Equations and Boundary Conditions (141)
      • Transient Conduction in Cylinders (145)
      • Transient Conduction in Spheres (151)
      • Time Dependent Boundary Conditions: Duhamel’s Superposition Integral (154)
        • Formulation of Duhamel’s Integral [1] (155)
        • Extension to Discontinuous Boundary Conditions (157)
        • Applications (158)
      • Conduction in Semi-infinite Regions: The Similarity Method (163)
      • REFERENCES (167)
  • Chapter 05 (176)
    • CONDUCTION IN POROUS MEDIA (176)
      • Examples of Conduction in Porous Media (176)
      • Simplified Heat Transfer Model (177)
        • Porosity (177)
        • Heat Conduction Equation: Cartesian Coordinates (178)
        • Boundary Conditions (180)
        • Heat Conduction Equation: Cylindrical Coordinates (181)
      • Applications (181)
      • REFEENCES (187)
  • Chapter 06 (197)
    • CONDUCTION WITH PHASE CHANGE: MOVING BOUNDARY PROBLEMS (197)
      • Introduction (197)
      • The Heat Equations (198)
      • Moving Interface Boundary Conditions (198)
      • Non-linearity of the Interface Energy Equation (201)
      • Non-dimensional Form of the Governing Equations: Governing Parameters (202)
      • Simplified Model: Quasi-Steady Approximation (203)
      • Exact Solutions (210)
        • Stefan’s Solution (210)
        • Neumann’s Solution: Solidification of Semi-Infinite Region (213)
        • Neumann’s Solution: Melting of Semi-infinite Region (216)
      • Effect of Density Change on the Liquid Phase (217)
      • Radial Conduction with Phase Change (218)
      • Phase Change in Finite Regions (222)
      • REFERENCES (223)
  • Chapter 07 (228)
    • NON-LINEAR CONDUCTION PROBLEMS (228)
      • Introduction (228)
      • Sources of Non-linearity (228)
        • Non-linear Differential Equations (228)
        • Non-linear Boundary Conditions (229)
      • Taylor Series Method (229)
      • Kirchhoff Transformation (233)
        • Transformation of Differential Equations (233)
        • Transformation of Boundary Conditions (234)
      • Boltzmann Transformation (237)
      • Combining Boltzmann and Kirchhoff Transformations (239)
      • Exact Solutions (240)
      • REFERENCES (243)
  • Chapter 08 (249)
    • APPROXIMATE SOLUTIONS: THE INTEGRAL METHOD (249)
      • Integral Method Approximation: Mathematical Simplification (249)
      • Procedure (249)
      • Accuracy of the Integral Method (250)
      • Application to Cartesian Coordinates (251)
      • Application to Cylindrical Coordinates (259)
      • Non-linear Problems [5] (264)
      • Energy Generation (273)
      • REFERENCES (277)
  • Chapter 09 (282)
    • PERTURBATION SOLUTIONS (282)
      • Introduction (282)
      • Solution Procedure (283)
      • Examples of Perturbation Problems in Conduction (284)
      • Perturbation Solutions: Examples (286)
      • Useful Expansions (309)
      • REFERENCES (309)
  • Chapter 10 (315)
    • Heat Transfer in Living Tissue (315)
      • Introduction (315)
      • Vascular Architecture and Blood Flow (315)
      • Blood Temperature Variation (317)
      • Mathematical Modeling of Vessels-Tissue Heat Transfer (318)
        • Pennes Bioheat Equation [1] (318)
        • Chen-Holmes Equation [5] (325)
        • Three-Temperature Model for Peripheral Tissue [7] (326)
        • Weinbaum-Jiji Simplified Bioheat Equation for Peripheral Tissue [8] (328)
        • The $s$-Vessel Tissue Cylinder Model [16] (336)
      • REFERENCES (345)
  • Chapter 11 (360)
    • MICROSCALE CONDUCTION (360)
      • Introduction (360)
        • Categories of Microscale Phenomena (361)
        • Purpose and Scope of this Chapter (363)
      • Understanding the Essential Physics of Thermal Conductivity Using the Kinetic Theory of Gases (364)
        • Derivation of Fourier’s Law and an Expression for the Thermal Conductivity (364)
      • Energy Carriers (368)
        • Ideal Gases: Heat is Conducted by Gas Molecules (368)
        • Metals: Heat is Conducted by Electrons (372)
        • Electrical Insulators and Semiconductors: Heat is Conducted by Phonons (Sound Waves) (374)
        • Radiation: Heat is Carried by Photons (Light Waves) (385)
      • Thermal Conductivity Reduction by Boundary Scattering: The Classical Size Effect (390)
        • Accounting for Multiple Scattering Mechanisms: Matthiessen’s rule (390)
        • Boundary Scattering for Heat Flow Parallel to Boundaries (392)
        • Boundary Scattering for Heat Flow Perpendicular to Boundaries (400)
      • Closing Thoughts (406)
      • REFERENCES (409)
  • back-matter (416)
Loading...