برای استفاده از امکانات سیستم، گزینه جاوا اسکریپت در مرورگر شما باید فعال باشد
صفحه
از
0
Bridge construction equipment
Rosignoli, Marco.
اطلاعات کتابشناختی
Bridge construction equipment
Author :
Rosignoli, Marco.
Publisher :
Thomas Telford,
Pub. Year :
2013
Subjects :
Bridges -- Design and construction -- Equipment and supplies.
Call Number :
TG 315 .R675 2013
جستجو در محتوا
ترتيب
شماره صفحه
امتياز صفحه
فهرست مطالب
01
(1)
Contents
(5)
Foreword
(9)
Preface
(11)
Acknowledgements
(17)
Notation
(19)
02
(22)
1.1. Construction cost of a bridge deck
(22)
1.2. Introduction to bridge construction equipment
(23)
Figure 1.1
(25)
1.3. Typical configurations of bridge construction equipment
(26)
References
(28)
ASBI (American Segmental Bridge Institute) (2008)
(28)
Däbritz M (2011)
(29)
Harridge S (2011)
(29)
Liu Y (2012)
(29)
Matyassy L and Palossy M (2006)
(29)
Meyer M (2011)
(29)
Pacheco P, Guerra A, Borges P and Coelho H (2007)
(29)
Pacheco P, Coelho H, Borges P and Guerra A (2011)
(29)
Rosignoli M (2001)
(29)
Rosignoli M (2002)
(29)
Rosignoli M (2007)
(29)
Rosignoli M (2010)
(29)
Rosignoli M (2011a)
(29)
Rosignoli M (2011b)
(29)
UDT (Utah Department of Transportation) (2008)
(29)
Vion P and Joing J (2011)
(29)
03
(30)
2.1. Technology of beam precasting
(30)
2.2. Straddle carriers and heavy lifters
(31)
Figure 2.1
(32)
Figure 2.2
(32)
2.3. Beam launchers
(34)
Figure 2.3
(35)
2.3.1 Loading, kinematics, typical features
(36)
Figure 2.5
(36)
Figure 2.4
(36)
Figure 2.6
(37)
Figure 2.7
(38)
Figure 2.8
(38)
2.3.2 Support, launch and lock systems
(39)
Figure 2.9
(39)
Figure 2.10
(39)
Figure 2.11
(40)
2.3.3 Performance and productivity
(41)
Figure 2.12
(41)
Figure 2.13
(41)
2.3.4 Structure-equipment interaction
(42)
References
(42)
Hewson NR (2003)
(42)
Rosignoli M (1999)
(42)
Rosignoli M (2011)
(42)
04
(43)
3.1. Technology of precast segmental construction
(43)
3.1.1 Fabrication and delivery of precast segments
(45)
Figure 3.1
(50)
Figure 3.2
(51)
Figure 3.3
(52)
Figure 3.4
(53)
Figure 3.5
(55)
Figure 3.6
(55)
3.1.2 Segment connection at the erection site
(58)
3.2. Technology of span-by-span erection of precast segments
(61)
Figure 3.7
(63)
Figure 3.8
(64)
3.3. Twin-girder overhead gantries
(64)
Figure 3.9
(65)
3.3.1 Loading, kinematics, typical features
(66)
Figure 3.10
(66)
Figure 3.11
(67)
Figure 3.12
(68)
Figure 3.13
(68)
3.3.2 Support, launch and lock systems
(69)
Figure 3.14
(70)
Figure 3.15
(71)
Figure 3.16
(72)
Figure 3.17
(72)
Figure 3.18
(73)
Figure 3.19
(74)
3.3.3 Performance and productivity
(74)
Figure 3.20
(75)
Figure 3.21
(76)
3.3.4 Structure-equipment interaction
(76)
Figure 3.22
(77)
3.4. Single-girder overhead gantries
(78)
Figure 3.23
(79)
3.4.1 Loading, kinematics, typical features
(79)
Figure 3.24
(80)
3.4.2 Support, launch and lock systems
(80)
Figure 3.25
(81)
Figure 3.26
(82)
Figure 3.27
(83)
Figure 3.28
(85)
3.4.3 Performance and productivity
(85)
Figure 3.29
(86)
3.4.4 Structure-equipment interaction
(86)
3.5. Underslung gantries
(87)
Figure 3.30
(88)
Figure 3.31
(89)
Figure 3.32
(90)
Figure 3.33
(91)
3.5.1 Loading, kinematics, typical features
(91)
Figure 3.34
(92)
Figure 3.35
(93)
3.5.2 Support, launch and lock systems
(93)
Figure 3.36
(94)
3.5.3 Performance and productivity
(95)
3.5.4 Structure-equipment interaction
(96)
References
(97)
AASHTO (American Association of State Highway and Transportation Officials) (2003)
(97)
AASHTO (2008a)
(97)
AASHTO (2008b)
(97)
AASHTO (2012)
(97)
ASBI (American Segmental Bridge Institute) (2008)
(97)
BSI (2006)
(97)
CNR (Consiglio Nazionale delle Ricerche) (1985a)
(97)
CNR (1985b)
(97)
CSA (Canadian Standards Association) (1975)
(97)
FEM (Fédération Européenne de la Manutention/European Federation of Materials Handling) (1987)
(97)
Harridge S (2011)
(97)
Hewson NR (2003)
(97)
Homsi EH (2012)
(97)
Kamaitis Z (2008)
(97)
Meyer M (2011)
(97)
Pacheco P, Coelho H, Borges P and Guerra A (2011)
(97)
Podolny W Jr (1985)
(97)
Rombach GA (2004)
(97)
Rombach GA and Abendeh R (2004)
(97)
Rosignoli M (1999)
(97)
Rosignoli M (2000)
(97)
Rosignoli M (2001)
(98)
Rosignoli M (2002)
(98)
Vion P and Joing J (2011)
(98)
05
(99)
4.1. Technology of macro-segmental construction
(99)
Figure 4.1
(100)
Figure 4.2
(101)
Figure 4.3
(102)
Figure 4.4
(103)
4.2. Twin-girder overhead gantries for span-by-span erection of adjacent macro-segmental decks
(103)
Figure 4.5
(104)
Figure 4.6
(105)
4.2.1 Loading, kinematics, typical features
(105)
Figure 4.7
(106)
4.2.2 Support, launch and lock systems
(106)
Figure 4.8
(107)
Figure 4.9
(108)
Figure 4.10
(109)
4.2.3 Performance and productivity
(109)
Figure 4.11
(110)
Table 4.1
(112)
4.2.4 Structure-equipment interaction
(113)
4.3. Twin-girder overhead gantries for balanced cantilever macro-segmental construction
(113)
Figure 4.12
(114)
Figure 4.13
(115)
4.3.1 Loading, kinematics, typical features
(116)
4.3.2 Support, launch and lock systems
(116)
4.3.3 Performance and productivity
(117)
4.3.4 Structure-equipment interaction
(117)
References
(118)
ASBI (American Segmental Bridge Institute) (2008)
(118)
Gimsing NJ and Georgakis CT (2012)
(118)
Matyassy L and Palossy M (2006)
(118)
Pacheco P, Coelho H, Borges P and Guerra A (2011)
(118)
Rosignoli M (2000)
(118)
Rosignoli M (2002)
(118)
Rosignoli M (2007)
(118)
Rosignoli M (2010)
(118)
Rosignoli M (2011)
(118)
06
(119)
5.1. Technology of span-by-span casting
(119)
Figure 5.1
(120)
Figure 5.2
(122)
Figure 5.3
(123)
Figure 5.4
(124)
Figure 5.5
(125)
Figure 5.6
(126)
Figure 5.7
(127)
Figure 5.8
(128)
Figure 5.9
(129)
5.2. Advancing shoring based on ground falsework
(129)
Figure 5.10
(130)
5.3. Twin-girder overhead MSSs
(130)
Figure 5.11
(131)
5.3.1 Loading, kinematics, typical features
(132)
Figure 5.12
(132)
Figure 5.13
(133)
5.3.2 Support, launch and lock systems
(134)
Figure 5.14
(135)
Figure 5.15
(136)
Figure 5.16
(137)
Figure 5.17
(138)
5.3.3 Performance and productivity
(138)
5.3.4 Structure-equipment interaction
(139)
5.4. Single-girder overhead MSSs
(140)
Figure 5.18
(140)
Figure 5.19
(141)
Figure 5.20
(142)
Figure 5.21
(142)
Figure 5.22
(143)
Figure 5.23
(144)
Figure 5.24
(144)
5.4.1 Loading, kinematics, typical features
(145)
Figure 5.25
(145)
Figure 5.26
(146)
Figure 5.27
(147)
Figure 5.28
(147)
Figure 5.29
(148)
Figure 5.30
(150)
Figure 5.31
(150)
5.4.2 Support, launch and lock systems
(151)
Figure 5.32
(152)
5.4.3 Performance and productivity
(154)
5.4.4 Structure-equipment interaction
(155)
Figure 5.33
(156)
5.5. Modular single-truss overhead MSSs for long spans
(156)
Figure 5.34
(159)
Figure 5.35
(159)
Figure 5.36
(160)
Figure 5.37
(161)
5.5.1 Loading, kinematics, typical features
(161)
Figure 5.38
(162)
Figure 5.39
(164)
5.5.2 Support, launch and lock systems
(164)
5.5.3 Performance and productivity
(165)
5.5.4 Structure-equipment interaction
(165)
Figure 5.40
(166)
Figure 5.41
(167)
Figure 5.42
(168)
5.6. Underslung MSSs
(169)
Figure 5.43
(169)
Figure 5.44
(170)
Figure 5.45
(171)
Figure 5.46
(171)
Figure 5.47
(173)
5.6.1 Loading, kinematics, typical features
(174)
Figure 5.48
(174)
Figure 5.49
(176)
Figure 5.50
(177)
Figure 5.51
(177)
5.6.2 Support, launch and lock systems
(178)
Figure 5.52
(179)
Figure 5.53
(180)
5.6.3 Performance and productivity
(181)
5.6.4 Structure-equipment interaction
(182)
Figure 5.54
(183)
References
(184)
AASHTO (American Association of State Highway and Transportation Officials) (2008a)
(184)
AASHTO (2008b)
(184)
AASHTO (2012)
(184)
ACI (American Concrete Institute) (2004)
(184)
ASBI (American Segmental Bridge Institute) (2008)
(184)
BSI (1996)
(184)
BSI (2008a)
(184)
BSI (2008b)
(184)
CNC (Confederación Nacional de la Construcción) (2007)
(184)
CSA (Canadian Standards Association) (1975)
(184)
Däbritz M (2011)
(184)
FIB (International Federation for Structural Concrete) (2009)
(184)
Harridge S (2011)
(184)
Homsi EH (2012)
(184)
Pacheco P, Coelho H, Borges P and Guerra A (2011)
(184)
Pacheco P, Guerra A, Borges P and Coelho H (2007)
(184)
Povoas AA (2012)
(184)
Rosignoli M (1998)
(185)
Rosignoli M (2000)
(185)
Rosignoli M (2001)
(185)
Rosignoli M (2002)
(185)
Rosignoli M (2007)
(185)
Rosignoli M (2010)
(185)
Rosignoli M (2011a)
(185)
Rosignoli M (2011b)
(185)
Rosignoli M (2012)
(185)
SAA (Standards Association of Australia) (1995)
(185)
07
(186)
6.1. Technology of composite bridges
(186)
Figure 6.1
(188)
Figure 6.2
(190)
Figure 6.3
(191)
6.2. Forming carriages
(193)
Figure 6.4
(194)
Figure 6.5
(195)
Figure 6.6
(195)
6.2.1 Loading, kinematics, typical features
(196)
6.2.2 Support, launch and lock systems
(196)
Figure 6.7
(197)
Figure 6.8
(197)
Figure 6.9
(198)
6.2.3 Performance and productivity
(199)
6.2.4 Structure-equipment interaction
(199)
Figure 6.10
(200)
Figure 6.11
(200)
References
(203)
AASHTO (American Association of State Highway and Transportation Officials) (2012)
(203)
BSI (1991)
(203)
CSA (Canadian Standards Association) (2000)
(203)
IABSE (International Association for Bridge and Structural Engineering) (1997)
(203)
Rosignoli M (2002)
(203)
08
(204)
7.1. Technology of precast segmental balanced cantilever erection
(204)
Figure 7.1
(205)
Figure 7.2
(206)
7.2. Lifting frames
(210)
Figure 7.3
(210)
Figure 7.4
(212)
Figure 7.5
(213)
Figure 7.6
(214)
Figure 7.7
(214)
Figure 7.8
(215)
Figure 7.9
(216)
Figure 7.10
(217)
7.2.1 Loading, kinematics, typical features
(217)
7.2.2 Support, launch and lock systems
(218)
7.2.3 Performance and productivity
(219)
7.2.4 Structure-equipment interaction
(220)
7.3. Cable cranes
(220)
7.4. Lifting platforms for suspension bridges
(221)
Figure 7.11
(224)
7.5. Launching gantries
(224)
Figure 7.12
(225)
Figure 7.13
(226)
Figure 7.14
(227)
Figure 7.15
(228)
Figure 7.16
(229)
Figure 7.17
(230)
7.5.1 Loading, kinematics, typical features
(231)
Figure 7.18
(232)
Figure 7.19
(233)
Figure 7.20
(234)
Figure 7.21
(235)
7.5.2 Support, launch and lock systems
(235)
Figure 7.22
(236)
Figure 7.23
(237)
Figure 7.24
(239)
Figure 7.25
(240)
7.5.3 Performance and productivity
(241)
7.5.4 Structure-equipment interaction
(242)
Figure 7.26
(243)
7.6. Technology of in-place balanced cantilever casting
(244)
Figure 7.27
(246)
7.7. Overhead form travellers
(248)
Figure 7.28
(249)
7.7.1 Loading, kinematics, typical features
(250)
Figure 7.29
(251)
Figure 7.30
(252)
Figure 7.31
(253)
7.7.2 Support, launch and lock systems
(253)
Figure 7.32
(254)
Figure 7.33
(255)
Figure 7.34
(255)
Figure 7.35
(256)
Figure 7.36
(257)
Figure 7.37
(257)
Figure 7.38
(258)
7.7.3 Performance and productivity
(258)
7.7.4 Structure-equipment interaction
(259)
Figure 7.39
(260)
7.8. Underslung form travellers
(260)
Figure 7.40
(261)
7.8.1 Loading, kinematics, typical features
(261)
Figure 7.41
(262)
7.8.2 Support, launch and lock systems
(262)
7.8.3 Performance and productivity
(263)
7.8.4 Structure-equipment interaction
(263)
7.9. Form travellers for concrete arches
(264)
Figure 7.42
(264)
Figure 7.43
(265)
7.9.1 Loading, kinematics, typical features
(265)
7.9.2 Support, launch and lock systems
(266)
7.9.3 Performance and productivity
(266)
Figure 7.44
(267)
7.9.4 Structure-equipment interaction
(267)
7.10. Form travellers for cable-stayed and extradosed bridges
(267)
Figure 7.45
(268)
Figure 7.46
(270)
Figure 7.47
(271)
Figure 7.48
(272)
Figure 7.49
(273)
7.10.1 Loading, kinematics, typical features
(273)
7.10.2 Support, launch and lock systems
(274)
7.10.3 Performance and productivity
(274)
Figure 7.50
(276)
7.10.4 Structure-equipment interaction
(276)
Figure 7.51
(277)
7.11. Suspension-girder MSSs
(279)
Figure 7.52
(279)
Figure 7.53
(280)
Figure 7.54
(282)
7.11.1 Loading, kinematics, typical features
(282)
7.11.2 Support, launch and lock systems
(283)
7.11.3 Performance and productivity
(284)
7.11.4 Structure-equipment interaction
(284)
References
(285)
AASHTO (American Association of State Highway and Transportation Officials) (2003)
(285)
ASBI (American Segmental Bridge Institute) (2008)
(285)
Gimsing NJ and Georgakis CT (2012)
(285)
Harridge S (2011)
(285)
Hewson NR (2003)
(285)
Homsi EH (2012)
(285)
IABSE (International Association for Bridge and Structural Engineering) (1997)
(285)
Matyassy L and Palossy M (2006)
(285)
Meyer M (2011)
(285)
Rosignoli M (2002)
(285)
Rosignoli M (2007)
(285)
Rosignoli M (2010)
(286)
Rosignoli M (2011)
(286)
VSL (2008)
(286)
09
(287)
8.1. Technology of full-span precasting
(287)
8.1.1 Full-span precasting of LRT decks
(287)
Figure 8.1
(289)
Figure 8.2
(290)
Figure 8.3
(291)
8.1.2 Full-span precasting of HSR decks
(291)
Figure 8.4
(292)
Figure 8.5
(292)
Figure 8.6
(293)
Figure 8.7
(294)
Figure 8.8
(295)
Figure 8.9
(295)
Figure 8.10
(296)
Figure 8.11
(297)
8.2. Tyre trolleys and span launchers
(297)
Figure 8.12
(298)
Figure 8.13
(298)
Figure 8.14
(299)
Figure 8.15
(300)
Figure 8.16
(301)
Figure 8.17
(301)
Figure 8.18
(302)
Figure 8.19
(302)
8.2.1 Loading, kinematics, typical features
(303)
8.2.2 Support, launch and lock systems
(304)
Figure 8.20
(305)
8.2.3 Performance and productivity
(305)
Figure 8.21
(306)
Figure 8.22
(306)
8.2.4 Structure-equipment interaction
(307)
8.3. Portal carriers with underbridge
(308)
Figure 8.23
(308)
Figure 8.24
(309)
Figure 8.25
(310)
Figure 8.26
(311)
Figure 8.27
(311)
Figure 8.28
(312)
8.3.1 Loading, kinematics, typical features
(312)
Figure 8.29
(313)
8.3.2 Support, launch and lock systems
(314)
8.3.3 Performance and productivity
(314)
Figure 8.30
(315)
8.3.4 Structure-equipment interaction
(315)
Figure 8.31
(316)
8.4. SPMTs
(316)
Figure 8.32
(317)
Figure 8.33
(318)
Figure 8.34
(319)
Figure 8.35
(320)
References
(322)
FHWA (Federal Highways Administration) (2007)
(322)
Liu Y (2012)
(322)
Rosignoli M (2011)
(322)
Rosignoli M (2012)
(322)
UDT (Utah Department of Transportation) (2008)
(322)
Vion P and Joing J (2011)
(322)
VSL (2008)
(322)
010
(323)
9.1. Introduction
(323)
9.2. Design loads common to most bridge construction equipment
(326)
9.2.1 Self-weight
(327)
9.2.2 Geometry imperfections
(328)
9.2.3 Loads on walkways and working platforms
(329)
9.2.4 Thermal loads
(329)
9.2.5 Wind loads
(330)
9.2.6 Exceptional loads
(332)
9.2.7 Human error
(333)
9.3. Design loads of MSSs
(334)
9.3.1 Casting cell
(334)
9.3.2 Load combinations
(335)
9.4. Design loads of heavy lifters
(336)
9.4.1 Classification
(337)
9.4.2 Design loads
(338)
9.4.3 Load combinations
(342)
9.5. Launch and restraint systems
(344)
Figure 9.1
(346)
9.6. Winch trolleys
(348)
Figure 9.2
(352)
Figure 9.3
(353)
9.7. Service life and reconditioning
(354)
Figure 9.4
(355)
Figure 9.5
(356)
Figure 9.6
(357)
References
(357)
AASHTO (American Association of State Highway and Transportation Officials) (2012a)
(357)
AASHTO (2012b)
(357)
Andre J, Beale R and Baptista A (2012)
(357)
ASCE (American Society of Civil Engineers) (2010)
(357)
Boggs D and Peterka J (1992)
(357)
BSI (2004a)
(358)
BSI (2004b)
(358)
BSI (2005a)
(358)
BSI (2005b)
(358)
BSI (2005c)
(358)
BSI (2005d)
(358)
BSI (2006)
(358)
CIRIA (Construction Industry Research and Information Association) (1977)
(358)
CNC (2007)
(358)
CNR (Consiglio Nazionale delle Ricerche) (1985a)
(358)
CNR (1985b)
(358)
CNR (1988)
(358)
DIN (Deutsches Institut für Normung) (1985)
(358)
DIN (1986)
(358)
FEM (Fédération Européenne de la Manutention/European Federation of Materials Handling) (1987)
(358)
Hewson NR (2003)
(358)
Hill H (2004)
(358)
Pacheco P, Coelho H, Borges P and Guerra A (2011)
(358)
Ratay R (2009)
(358)
Reason J (1990)
(358)
Rosignoli M (2000)
(358)
Rosignoli M (2002)
(358)
Rosignoli M (2007)
(358)
Rosignoli M (2010)
(358)
Rosignoli M (2011)
(358)
Rosowsky D (1995)
(359)
Sexsmith R (1988)
(359)
Sexsmith R and Reid S (2003)
(359)
011
(360)
10.1. Numerical modelling
(360)
10.2. Ideal and actual trusses
(360)
Figure 10.1
(361)
Figure 10.2
(361)
10.3. Truss instability
(363)
10.4. P-delta effect
(364)
10.5. Buckling analysis
(365)
Figure 10.3
(366)
Figure 10.4
(367)
10.6. Robustness of trusses
(367)
Figure 10.5
(368)
Figure 10.6
(369)
10.7. Instability of I- and box girders
(369)
10.8. Instability of support members
(372)
Figure 10.7
(373)
Figure 10.8
(374)
10.9. Material-related failures
(375)
10.9.1 Ductile fracture
(376)
10.9.2 Brittle fracture
(376)
10.9.3 Fatigue cracking
(378)
10.9.4 Atmospheric corrosion
(380)
10.9.5 Stress corrosion
(381)
10.10. Permanent connections
(381)
10.11. Field splices
(383)
Figure 10.9
(384)
Figure 10.10
(386)
Figure 10.11
(389)
10.12. Repairs during operations
(390)
10.13. Programmable control systems
(391)
References
(392)
AISC (American Institute of Steel Construction) (2006)
(392)
ASTM (American Society for Testing and Materials) (2012a)
(392)
ASTM (2012b)
(392)
ASTM (2012c)
(392)
AWS (American Welding Society) (2010)
(392)
BSI (1990)
(392)
BSI (1991)
(392)
BSI (2005)
(392)
CNR (Consiglio Nazionale delle Ricerche) (1988)
(392)
CSI (2012)
(392)
FEM (Fédération Européenne de la Manutention/European Federation of Materials Handling) (1987)
(392)
Ratay R (2009)
(392)
RCSC (Research Council on Structural Connections) (2009)
(392)
Rosignoli M (1998)
(392)
Rosignoli M (2002)
(392)
Rosignoli M (2007)
(392)
Rosignoli M (2010)
(392)
Rosignoli M (2011)
(392)
Starossek U (2006)
(392)
Starossek U (2009)
(392)
012
(393)
11.1. Contractual environment
(393)
11.2. Request for Proposal
(395)
11.2.1 General description of the bridge project
(397)
11.2.2 Performance requirements and technical specifications
(399)
11.2.3 Requested content for the proposal
(401)
11.3. Design documents
(403)
11.3.1 Technical report
(404)
11.3.2 Design report
(405)
11.3.3 Plans
(407)
11.3.4 Technical specifications
(409)
Figure 11.1
(412)
11.3.5 Assembly manual
(413)
Figure 11.2
(415)
Figure 11.3
(417)
11.3.6 Operation manual
(418)
11.4. Risk management
(424)
11.5. Safety
(426)
References
(428)
BSI (2006)
(428)
CNC (Confederación Nacional de la Construcción) (2007)
(428)
CNR (Consiglio Nazionale delle Ricerche) (1985)
(428)
CSA (Canadian Standards Association) (1975)
(428)
FEM (Fédération Européenne de la Manutention/European Federation of Materials Handling) (1987)
(428)
Homsi EH (2012)
(428)
HSE (Health and Safety Executive) (2001)
(428)
HSE (2011)
(428)
ISO (International Organization for Standardization) (2009a)
(428)
ISO (2009b)
(428)
Reason J (1990)
(428)
Rosignoli M (2007)
(428)
Rosignoli M (2010)
(428)
Rosignoli M (2011a)
(429)
Rosignoli M (2011b)
(429)
Scheer J (2010)
(429)
013
(430)
12.1. Introduction
(430)
12.1.1 Incidents and failures
(431)
12.1.2 Standards of care and liability
(431)
12.2. Emergency response to failure
(432)
12.2.1 Safety
(433)
12.2.2 Documentation of conditions
(433)
Figure 12.1
(434)
Figure 12.2
(435)
12.2.3 Preservation of evidence
(435)
Figure 12.3
(436)
12.2.4 Gathering information
(437)
12.2.5 Preliminary evaluations
(438)
12.3. Forensic investigation
(439)
12.3.1 Investigative plan
(439)
Figure 12.4
(440)
12.3.2 Parties and communications
(440)
12.3.3 Design errors
(441)
12.3.4 Defects of fabrication and assembly
(442)
12.3.5 Improper operations
(443)
12.3.6 Defects due to deterioration, maintenance and repairs
(444)
12.3.7 Defects in the bridge
(444)
12.3.8 Structural analysis
(445)
12.3.9 Laboratory analysis
(446)
12.3.10 Reporting
(447)
12.4. Case studies
(447)
12.4.1 Inconsistent load path
(447)
Figure 12.5
(448)
12.4.2 Inconsistent execution of field splices
(449)
Figure 12.6
(449)
12.4.3 Inadequate communications
(450)
Figure 12.7
(450)
Figure 12.8
(451)
12.4.4 Excessive extraction of geometry adjustment devices
(451)
Figure 12.9
(452)
12.4.5 Inadequate bracing
(452)
12.4.6 Instability of temporary piers
(452)
Figure 12.10
(453)
Figure 12.11
(454)
12.4.7 Distress of midspan closure joints
(454)
Figure 12.12
(455)
Figure 12.13
(455)
References
(456)
ASTM (2012)
(456)
Harridge S (2011)
(456)
Homsi EH (2012a)
(456)
Homsi EH (2012b)
(456)
Ratay R (2009)
(456)
Reason J (1990)
(456)
Rosignoli M (2002)
(456)
Rosignoli M (2007)
(456)
Rosignoli M (2010)
(456)
Rosignoli M (2011a)
(456)
Rosignoli M (2011b)
(456)
Vaughan D (1996)
(456)
014
(457)
Glossary
(457)
015
(467)
Further reading
BSI (2009)
(467)
International Federation for Structural Concrete (FIB) (1990)
(467)
Standards Association of Australia (SAA) (2007)
(467)
016
(468)
Index
(468)