کتابخانه مرکزی دانشگاه صنعتی شریف
    • [نمايش بزرگتر]
    • [نمايش کوچکتر]
  • صفحه 
     از  0
  • [صفحه قبل]
  • [صفحه بعد]
  • [نمایش تمام صفحه]
  • [بستن]
 
Bridge construction equipment
Rosignoli, Marco.

اطلاعات کتابشناختی

Bridge construction equipment
Author :   Rosignoli, Marco.
Publisher :   Thomas Telford,
Pub. Year  :   2013
Subjects :   Bridges -- Design and construction -- Equipment and supplies.
Call Number :   ‭TG 315 .R675 2013

جستجو در محتوا

ترتيب

فهرست مطالب

  • 01 (1)
    • Contents (5)
    • Foreword (9)
    • Preface (11)
    • Acknowledgements (17)
    • Notation (19)
  • 02 (22)
    • 1.1. Construction cost of a bridge deck (22)
    • 1.2. Introduction to bridge construction equipment (23)
      • Figure 1.1 (25)
    • 1.3. Typical configurations of bridge construction equipment (26)
    • References (28)
      • ASBI (American Segmental Bridge Institute) (2008) (28)
      • Däbritz M (2011) (29)
      • Harridge S (2011) (29)
      • Liu Y (2012) (29)
      • Matyassy L and Palossy M (2006) (29)
      • Meyer M (2011) (29)
      • Pacheco P, Guerra A, Borges P and Coelho H (2007) (29)
      • Pacheco P, Coelho H, Borges P and Guerra A (2011) (29)
      • Rosignoli M (2001) (29)
      • Rosignoli M (2002) (29)
      • Rosignoli M (2007) (29)
      • Rosignoli M (2010) (29)
      • Rosignoli M (2011a) (29)
      • Rosignoli M (2011b) (29)
      • UDT (Utah Department of Transportation) (2008) (29)
      • Vion P and Joing J (2011) (29)
  • 03 (30)
    • 2.1. Technology of beam precasting (30)
    • 2.2. Straddle carriers and heavy lifters (31)
      • Figure 2.1 (32)
      • Figure 2.2 (32)
    • 2.3. Beam launchers (34)
      • Figure 2.3 (35)
      • 2.3.1 Loading, kinematics, typical features (36)
      • Figure 2.5 (36)
      • Figure 2.4 (36)
      • Figure 2.6 (37)
      • Figure 2.7 (38)
      • Figure 2.8 (38)
      • 2.3.2 Support, launch and lock systems (39)
      • Figure 2.9 (39)
      • Figure 2.10 (39)
      • Figure 2.11 (40)
      • 2.3.3 Performance and productivity (41)
      • Figure 2.12 (41)
      • Figure 2.13 (41)
      • 2.3.4 Structure-equipment interaction (42)
    • References (42)
      • Hewson NR (2003) (42)
      • Rosignoli M (1999) (42)
      • Rosignoli M (2011) (42)
  • 04 (43)
    • 3.1. Technology of precast segmental construction (43)
      • 3.1.1 Fabrication and delivery of precast segments (45)
      • Figure 3.1 (50)
      • Figure 3.2 (51)
      • Figure 3.3 (52)
      • Figure 3.4 (53)
      • Figure 3.5 (55)
      • Figure 3.6 (55)
      • 3.1.2 Segment connection at the erection site (58)
    • 3.2. Technology of span-by-span erection of precast segments (61)
      • Figure 3.7 (63)
      • Figure 3.8 (64)
    • 3.3. Twin-girder overhead gantries (64)
      • Figure 3.9 (65)
      • 3.3.1 Loading, kinematics, typical features (66)
      • Figure 3.10 (66)
      • Figure 3.11 (67)
      • Figure 3.12 (68)
      • Figure 3.13 (68)
      • 3.3.2 Support, launch and lock systems (69)
      • Figure 3.14 (70)
      • Figure 3.15 (71)
      • Figure 3.16 (72)
      • Figure 3.17 (72)
      • Figure 3.18 (73)
      • Figure 3.19 (74)
      • 3.3.3 Performance and productivity (74)
      • Figure 3.20 (75)
      • Figure 3.21 (76)
      • 3.3.4 Structure-equipment interaction (76)
      • Figure 3.22 (77)
    • 3.4. Single-girder overhead gantries (78)
      • Figure 3.23 (79)
      • 3.4.1 Loading, kinematics, typical features (79)
      • Figure 3.24 (80)
      • 3.4.2 Support, launch and lock systems (80)
      • Figure 3.25 (81)
      • Figure 3.26 (82)
      • Figure 3.27 (83)
      • Figure 3.28 (85)
      • 3.4.3 Performance and productivity (85)
      • Figure 3.29 (86)
      • 3.4.4 Structure-equipment interaction (86)
    • 3.5. Underslung gantries (87)
      • Figure 3.30 (88)
      • Figure 3.31 (89)
      • Figure 3.32 (90)
      • Figure 3.33 (91)
      • 3.5.1 Loading, kinematics, typical features (91)
      • Figure 3.34 (92)
      • Figure 3.35 (93)
      • 3.5.2 Support, launch and lock systems (93)
      • Figure 3.36 (94)
      • 3.5.3 Performance and productivity (95)
      • 3.5.4 Structure-equipment interaction (96)
    • References (97)
      • AASHTO (American Association of State Highway and Transportation Officials) (2003) (97)
      • AASHTO (2008a) (97)
      • AASHTO (2008b) (97)
      • AASHTO (2012) (97)
      • ASBI (American Segmental Bridge Institute) (2008) (97)
      • BSI (2006) (97)
      • CNR (Consiglio Nazionale delle Ricerche) (1985a) (97)
      • CNR (1985b) (97)
      • CSA (Canadian Standards Association) (1975) (97)
      • FEM (Fédération Européenne de la Manutention/European Federation of Materials Handling) (1987) (97)
      • Harridge S (2011) (97)
      • Hewson NR (2003) (97)
      • Homsi EH (2012) (97)
      • Kamaitis Z (2008) (97)
      • Meyer M (2011) (97)
      • Pacheco P, Coelho H, Borges P and Guerra A (2011) (97)
      • Podolny W Jr (1985) (97)
      • Rombach GA (2004) (97)
      • Rombach GA and Abendeh R (2004) (97)
      • Rosignoli M (1999) (97)
      • Rosignoli M (2000) (97)
      • Rosignoli M (2001) (98)
      • Rosignoli M (2002) (98)
      • Vion P and Joing J (2011) (98)
  • 05 (99)
    • 4.1. Technology of macro-segmental construction (99)
      • Figure 4.1 (100)
      • Figure 4.2 (101)
      • Figure 4.3 (102)
      • Figure 4.4 (103)
    • 4.2. Twin-girder overhead gantries for span-by-span erection of adjacent macro-segmental decks (103)
      • Figure 4.5 (104)
      • Figure 4.6 (105)
      • 4.2.1 Loading, kinematics, typical features (105)
      • Figure 4.7 (106)
      • 4.2.2 Support, launch and lock systems (106)
      • Figure 4.8 (107)
      • Figure 4.9 (108)
      • Figure 4.10 (109)
      • 4.2.3 Performance and productivity (109)
      • Figure 4.11 (110)
      • Table 4.1 (112)
      • 4.2.4 Structure-equipment interaction (113)
    • 4.3. Twin-girder overhead gantries for balanced cantilever macro-segmental construction (113)
      • Figure 4.12 (114)
      • Figure 4.13 (115)
      • 4.3.1 Loading, kinematics, typical features (116)
      • 4.3.2 Support, launch and lock systems (116)
      • 4.3.3 Performance and productivity (117)
      • 4.3.4 Structure-equipment interaction (117)
    • References (118)
      • ASBI (American Segmental Bridge Institute) (2008) (118)
      • Gimsing NJ and Georgakis CT (2012) (118)
      • Matyassy L and Palossy M (2006) (118)
      • Pacheco P, Coelho H, Borges P and Guerra A (2011) (118)
      • Rosignoli M (2000) (118)
      • Rosignoli M (2002) (118)
      • Rosignoli M (2007) (118)
      • Rosignoli M (2010) (118)
      • Rosignoli M (2011) (118)
  • 06 (119)
    • 5.1. Technology of span-by-span casting (119)
      • Figure 5.1 (120)
      • Figure 5.2 (122)
      • Figure 5.3 (123)
      • Figure 5.4 (124)
      • Figure 5.5 (125)
      • Figure 5.6 (126)
      • Figure 5.7 (127)
      • Figure 5.8 (128)
      • Figure 5.9 (129)
    • 5.2. Advancing shoring based on ground falsework (129)
      • Figure 5.10 (130)
    • 5.3. Twin-girder overhead MSSs (130)
      • Figure 5.11 (131)
      • 5.3.1 Loading, kinematics, typical features (132)
      • Figure 5.12 (132)
      • Figure 5.13 (133)
      • 5.3.2 Support, launch and lock systems (134)
      • Figure 5.14 (135)
      • Figure 5.15 (136)
      • Figure 5.16 (137)
      • Figure 5.17 (138)
      • 5.3.3 Performance and productivity (138)
      • 5.3.4 Structure-equipment interaction (139)
      • 5.4. Single-girder overhead MSSs (140)
      • Figure 5.18 (140)
      • Figure 5.19 (141)
      • Figure 5.20 (142)
      • Figure 5.21 (142)
      • Figure 5.22 (143)
      • Figure 5.23 (144)
      • Figure 5.24 (144)
      • 5.4.1 Loading, kinematics, typical features (145)
      • Figure 5.25 (145)
      • Figure 5.26 (146)
      • Figure 5.27 (147)
      • Figure 5.28 (147)
      • Figure 5.29 (148)
      • Figure 5.30 (150)
      • Figure 5.31 (150)
      • 5.4.2 Support, launch and lock systems (151)
      • Figure 5.32 (152)
      • 5.4.3 Performance and productivity (154)
      • 5.4.4 Structure-equipment interaction (155)
      • Figure 5.33 (156)
    • 5.5. Modular single-truss overhead MSSs for long spans (156)
      • Figure 5.34 (159)
      • Figure 5.35 (159)
      • Figure 5.36 (160)
      • Figure 5.37 (161)
      • 5.5.1 Loading, kinematics, typical features (161)
      • Figure 5.38 (162)
      • Figure 5.39 (164)
      • 5.5.2 Support, launch and lock systems (164)
      • 5.5.3 Performance and productivity (165)
      • 5.5.4 Structure-equipment interaction (165)
      • Figure 5.40 (166)
      • Figure 5.41 (167)
      • Figure 5.42 (168)
    • 5.6. Underslung MSSs (169)
      • Figure 5.43 (169)
      • Figure 5.44 (170)
      • Figure 5.45 (171)
      • Figure 5.46 (171)
      • Figure 5.47 (173)
      • 5.6.1 Loading, kinematics, typical features (174)
      • Figure 5.48 (174)
      • Figure 5.49 (176)
      • Figure 5.50 (177)
      • Figure 5.51 (177)
      • 5.6.2 Support, launch and lock systems (178)
      • Figure 5.52 (179)
      • Figure 5.53 (180)
      • 5.6.3 Performance and productivity (181)
      • 5.6.4 Structure-equipment interaction (182)
      • Figure 5.54 (183)
    • References (184)
      • AASHTO (American Association of State Highway and Transportation Officials) (2008a) (184)
      • AASHTO (2008b) (184)
      • AASHTO (2012) (184)
      • ACI (American Concrete Institute) (2004) (184)
      • ASBI (American Segmental Bridge Institute) (2008) (184)
      • BSI (1996) (184)
      • BSI (2008a) (184)
      • BSI (2008b) (184)
      • CNC (Confederación Nacional de la Construcción) (2007) (184)
      • CSA (Canadian Standards Association) (1975) (184)
      • Däbritz M (2011) (184)
      • FIB (International Federation for Structural Concrete) (2009) (184)
      • Harridge S (2011) (184)
      • Homsi EH (2012) (184)
      • Pacheco P, Coelho H, Borges P and Guerra A (2011) (184)
      • Pacheco P, Guerra A, Borges P and Coelho H (2007) (184)
      • Povoas AA (2012) (184)
      • Rosignoli M (1998) (185)
      • Rosignoli M (2000) (185)
      • Rosignoli M (2001) (185)
      • Rosignoli M (2002) (185)
      • Rosignoli M (2007) (185)
      • Rosignoli M (2010) (185)
      • Rosignoli M (2011a) (185)
      • Rosignoli M (2011b) (185)
      • Rosignoli M (2012) (185)
      • SAA (Standards Association of Australia) (1995) (185)
  • 07 (186)
    • 6.1. Technology of composite bridges (186)
      • Figure 6.1 (188)
      • Figure 6.2 (190)
      • Figure 6.3 (191)
    • 6.2. Forming carriages (193)
      • Figure 6.4 (194)
      • Figure 6.5 (195)
      • Figure 6.6 (195)
      • 6.2.1 Loading, kinematics, typical features (196)
      • 6.2.2 Support, launch and lock systems (196)
      • Figure 6.7 (197)
      • Figure 6.8 (197)
      • Figure 6.9 (198)
      • 6.2.3 Performance and productivity (199)
      • 6.2.4 Structure-equipment interaction (199)
      • Figure 6.10 (200)
      • Figure 6.11 (200)
    • References (203)
      • AASHTO (American Association of State Highway and Transportation Officials) (2012) (203)
      • BSI (1991) (203)
      • CSA (Canadian Standards Association) (2000) (203)
      • IABSE (International Association for Bridge and Structural Engineering) (1997) (203)
      • Rosignoli M (2002) (203)
  • 08 (204)
    • 7.1. Technology of precast segmental balanced cantilever erection (204)
      • Figure 7.1 (205)
      • Figure 7.2 (206)
    • 7.2. Lifting frames (210)
      • Figure 7.3 (210)
      • Figure 7.4 (212)
      • Figure 7.5 (213)
      • Figure 7.6 (214)
      • Figure 7.7 (214)
      • Figure 7.8 (215)
      • Figure 7.9 (216)
      • Figure 7.10 (217)
      • 7.2.1 Loading, kinematics, typical features (217)
      • 7.2.2 Support, launch and lock systems (218)
      • 7.2.3 Performance and productivity (219)
      • 7.2.4 Structure-equipment interaction (220)
    • 7.3. Cable cranes (220)
    • 7.4. Lifting platforms for suspension bridges (221)
      • Figure 7.11 (224)
    • 7.5. Launching gantries (224)
      • Figure 7.12 (225)
      • Figure 7.13 (226)
      • Figure 7.14 (227)
      • Figure 7.15 (228)
      • Figure 7.16 (229)
      • Figure 7.17 (230)
      • 7.5.1 Loading, kinematics, typical features (231)
      • Figure 7.18 (232)
      • Figure 7.19 (233)
      • Figure 7.20 (234)
      • Figure 7.21 (235)
      • 7.5.2 Support, launch and lock systems (235)
      • Figure 7.22 (236)
      • Figure 7.23 (237)
      • Figure 7.24 (239)
      • Figure 7.25 (240)
      • 7.5.3 Performance and productivity (241)
      • 7.5.4 Structure-equipment interaction (242)
      • Figure 7.26 (243)
    • 7.6. Technology of in-place balanced cantilever casting (244)
      • Figure 7.27 (246)
    • 7.7. Overhead form travellers (248)
    • Figure 7.28 (249)
      • 7.7.1 Loading, kinematics, typical features (250)
      • Figure 7.29 (251)
      • Figure 7.30 (252)
      • Figure 7.31 (253)
      • 7.7.2 Support, launch and lock systems (253)
      • Figure 7.32 (254)
      • Figure 7.33 (255)
      • Figure 7.34 (255)
      • Figure 7.35 (256)
      • Figure 7.36 (257)
      • Figure 7.37 (257)
      • Figure 7.38 (258)
      • 7.7.3 Performance and productivity (258)
      • 7.7.4 Structure-equipment interaction (259)
      • Figure 7.39 (260)
    • 7.8. Underslung form travellers (260)
      • Figure 7.40 (261)
      • 7.8.1 Loading, kinematics, typical features (261)
      • Figure 7.41 (262)
      • 7.8.2 Support, launch and lock systems (262)
      • 7.8.3 Performance and productivity (263)
      • 7.8.4 Structure-equipment interaction (263)
    • 7.9. Form travellers for concrete arches (264)
      • Figure 7.42 (264)
      • Figure 7.43 (265)
      • 7.9.1 Loading, kinematics, typical features (265)
      • 7.9.2 Support, launch and lock systems (266)
      • 7.9.3 Performance and productivity (266)
      • Figure 7.44 (267)
      • 7.9.4 Structure-equipment interaction (267)
    • 7.10. Form travellers for cable-stayed and extradosed bridges (267)
      • Figure 7.45 (268)
      • Figure 7.46 (270)
      • Figure 7.47 (271)
      • Figure 7.48 (272)
      • Figure 7.49 (273)
      • 7.10.1 Loading, kinematics, typical features (273)
      • 7.10.2 Support, launch and lock systems (274)
      • 7.10.3 Performance and productivity (274)
      • Figure 7.50 (276)
      • 7.10.4 Structure-equipment interaction (276)
      • Figure 7.51 (277)
    • 7.11. Suspension-girder MSSs (279)
      • Figure 7.52 (279)
      • Figure 7.53 (280)
      • Figure 7.54 (282)
      • 7.11.1 Loading, kinematics, typical features (282)
      • 7.11.2 Support, launch and lock systems (283)
      • 7.11.3 Performance and productivity (284)
      • 7.11.4 Structure-equipment interaction (284)
    • References (285)
      • AASHTO (American Association of State Highway and Transportation Officials) (2003) (285)
      • ASBI (American Segmental Bridge Institute) (2008) (285)
      • Gimsing NJ and Georgakis CT (2012) (285)
      • Harridge S (2011) (285)
      • Hewson NR (2003) (285)
      • Homsi EH (2012) (285)
      • IABSE (International Association for Bridge and Structural Engineering) (1997) (285)
      • Matyassy L and Palossy M (2006) (285)
      • Meyer M (2011) (285)
      • Rosignoli M (2002) (285)
      • Rosignoli M (2007) (285)
      • Rosignoli M (2010) (286)
      • Rosignoli M (2011) (286)
      • VSL (2008) (286)
  • 09 (287)
    • 8.1. Technology of full-span precasting (287)
      • 8.1.1 Full-span precasting of LRT decks (287)
      • Figure 8.1 (289)
      • Figure 8.2 (290)
      • Figure 8.3 (291)
      • 8.1.2 Full-span precasting of HSR decks (291)
      • Figure 8.4 (292)
      • Figure 8.5 (292)
      • Figure 8.6 (293)
      • Figure 8.7 (294)
      • Figure 8.8 (295)
      • Figure 8.9 (295)
      • Figure 8.10 (296)
      • Figure 8.11 (297)
    • 8.2. Tyre trolleys and span launchers (297)
      • Figure 8.12 (298)
      • Figure 8.13 (298)
      • Figure 8.14 (299)
      • Figure 8.15 (300)
      • Figure 8.16 (301)
      • Figure 8.17 (301)
      • Figure 8.18 (302)
      • Figure 8.19 (302)
      • 8.2.1 Loading, kinematics, typical features (303)
      • 8.2.2 Support, launch and lock systems (304)
      • Figure 8.20 (305)
      • 8.2.3 Performance and productivity (305)
      • Figure 8.21 (306)
      • Figure 8.22 (306)
      • 8.2.4 Structure-equipment interaction (307)
    • 8.3. Portal carriers with underbridge (308)
      • Figure 8.23 (308)
      • Figure 8.24 (309)
      • Figure 8.25 (310)
      • Figure 8.26 (311)
      • Figure 8.27 (311)
      • Figure 8.28 (312)
      • 8.3.1 Loading, kinematics, typical features (312)
      • Figure 8.29 (313)
      • 8.3.2 Support, launch and lock systems (314)
      • 8.3.3 Performance and productivity (314)
      • Figure 8.30 (315)
      • 8.3.4 Structure-equipment interaction (315)
      • Figure 8.31 (316)
    • 8.4. SPMTs (316)
      • Figure 8.32 (317)
      • Figure 8.33 (318)
      • Figure 8.34 (319)
      • Figure 8.35 (320)
    • References (322)
      • FHWA (Federal Highways Administration) (2007) (322)
      • Liu Y (2012) (322)
      • Rosignoli M (2011) (322)
      • Rosignoli M (2012) (322)
      • UDT (Utah Department of Transportation) (2008) (322)
      • Vion P and Joing J (2011) (322)
      • VSL (2008) (322)
  • 010 (323)
    • 9.1. Introduction (323)
    • 9.2. Design loads common to most bridge construction equipment (326)
      • 9.2.1 Self-weight (327)
      • 9.2.2 Geometry imperfections (328)
      • 9.2.3 Loads on walkways and working platforms (329)
      • 9.2.4 Thermal loads (329)
      • 9.2.5 Wind loads (330)
      • 9.2.6 Exceptional loads (332)
      • 9.2.7 Human error (333)
    • 9.3. Design loads of MSSs (334)
      • 9.3.1 Casting cell (334)
      • 9.3.2 Load combinations (335)
    • 9.4. Design loads of heavy lifters (336)
      • 9.4.1 Classification (337)
      • 9.4.2 Design loads (338)
      • 9.4.3 Load combinations (342)
    • 9.5. Launch and restraint systems (344)
      • Figure 9.1 (346)
    • 9.6. Winch trolleys (348)
      • Figure 9.2 (352)
      • Figure 9.3 (353)
    • 9.7. Service life and reconditioning (354)
      • Figure 9.4 (355)
      • Figure 9.5 (356)
      • Figure 9.6 (357)
    • References (357)
      • AASHTO (American Association of State Highway and Transportation Officials) (2012a) (357)
      • AASHTO (2012b) (357)
      • Andre J, Beale R and Baptista A (2012) (357)
      • ASCE (American Society of Civil Engineers) (2010) (357)
      • Boggs D and Peterka J (1992) (357)
      • BSI (2004a) (358)
      • BSI (2004b) (358)
      • BSI (2005a) (358)
      • BSI (2005b) (358)
      • BSI (2005c) (358)
      • BSI (2005d) (358)
      • BSI (2006) (358)
      • CIRIA (Construction Industry Research and Information Association) (1977) (358)
      • CNC (2007) (358)
      • CNR (Consiglio Nazionale delle Ricerche) (1985a) (358)
      • CNR (1985b) (358)
      • CNR (1988) (358)
      • DIN (Deutsches Institut für Normung) (1985) (358)
      • DIN (1986) (358)
      • FEM (Fédération Européenne de la Manutention/European Federation of Materials Handling) (1987) (358)
      • Hewson NR (2003) (358)
      • Hill H (2004) (358)
      • Pacheco P, Coelho H, Borges P and Guerra A (2011) (358)
      • Ratay R (2009) (358)
      • Reason J (1990) (358)
      • Rosignoli M (2000) (358)
      • Rosignoli M (2002) (358)
      • Rosignoli M (2007) (358)
      • Rosignoli M (2010) (358)
      • Rosignoli M (2011) (358)
      • Rosowsky D (1995) (359)
      • Sexsmith R (1988) (359)
      • Sexsmith R and Reid S (2003) (359)
  • 011 (360)
    • 10.1. Numerical modelling (360)
    • 10.2. Ideal and actual trusses (360)
      • Figure 10.1 (361)
      • Figure 10.2 (361)
    • 10.3. Truss instability (363)
    • 10.4. P-delta effect (364)
    • 10.5. Buckling analysis (365)
      • Figure 10.3 (366)
      • Figure 10.4 (367)
    • 10.6. Robustness of trusses (367)
      • Figure 10.5 (368)
      • Figure 10.6 (369)
    • 10.7. Instability of I- and box girders (369)
    • 10.8. Instability of support members (372)
      • Figure 10.7 (373)
      • Figure 10.8 (374)
    • 10.9. Material-related failures (375)
      • 10.9.1 Ductile fracture (376)
      • 10.9.2 Brittle fracture (376)
      • 10.9.3 Fatigue cracking (378)
      • 10.9.4 Atmospheric corrosion (380)
      • 10.9.5 Stress corrosion (381)
    • 10.10. Permanent connections (381)
    • 10.11. Field splices (383)
      • Figure 10.9 (384)
      • Figure 10.10 (386)
      • Figure 10.11 (389)
    • 10.12. Repairs during operations (390)
    • 10.13. Programmable control systems (391)
    • References (392)
      • AISC (American Institute of Steel Construction) (2006) (392)
      • ASTM (American Society for Testing and Materials) (2012a) (392)
      • ASTM (2012b) (392)
      • ASTM (2012c) (392)
      • AWS (American Welding Society) (2010) (392)
      • BSI (1990) (392)
      • BSI (1991) (392)
      • BSI (2005) (392)
      • CNR (Consiglio Nazionale delle Ricerche) (1988) (392)
      • CSI (2012) (392)
      • FEM (Fédération Européenne de la Manutention/European Federation of Materials Handling) (1987) (392)
      • Ratay R (2009) (392)
      • RCSC (Research Council on Structural Connections) (2009) (392)
      • Rosignoli M (1998) (392)
      • Rosignoli M (2002) (392)
      • Rosignoli M (2007) (392)
      • Rosignoli M (2010) (392)
      • Rosignoli M (2011) (392)
      • Starossek U (2006) (392)
      • Starossek U (2009) (392)
  • 012 (393)
    • 11.1. Contractual environment (393)
    • 11.2. Request for Proposal (395)
      • 11.2.1 General description of the bridge project (397)
      • 11.2.2 Performance requirements and technical specifications (399)
      • 11.2.3 Requested content for the proposal (401)
    • 11.3. Design documents (403)
      • 11.3.1 Technical report (404)
      • 11.3.2 Design report (405)
      • 11.3.3 Plans (407)
      • 11.3.4 Technical specifications (409)
      • Figure 11.1 (412)
      • 11.3.5 Assembly manual (413)
      • Figure 11.2 (415)
      • Figure 11.3 (417)
      • 11.3.6 Operation manual (418)
    • 11.4. Risk management (424)
    • 11.5. Safety (426)
    • References (428)
      • BSI (2006) (428)
      • CNC (Confederación Nacional de la Construcción) (2007) (428)
      • CNR (Consiglio Nazionale delle Ricerche) (1985) (428)
      • CSA (Canadian Standards Association) (1975) (428)
      • FEM (Fédération Européenne de la Manutention/European Federation of Materials Handling) (1987) (428)
      • Homsi EH (2012) (428)
      • HSE (Health and Safety Executive) (2001) (428)
      • HSE (2011) (428)
      • ISO (International Organization for Standardization) (2009a) (428)
      • ISO (2009b) (428)
      • Reason J (1990) (428)
      • Rosignoli M (2007) (428)
      • Rosignoli M (2010) (428)
      • Rosignoli M (2011a) (429)
      • Rosignoli M (2011b) (429)
      • Scheer J (2010) (429)
  • 013 (430)
    • 12.1. Introduction (430)
      • 12.1.1 Incidents and failures (431)
      • 12.1.2 Standards of care and liability (431)
    • 12.2. Emergency response to failure (432)
      • 12.2.1 Safety (433)
      • 12.2.2 Documentation of conditions (433)
      • Figure 12.1 (434)
      • Figure 12.2 (435)
      • 12.2.3 Preservation of evidence (435)
      • Figure 12.3 (436)
      • 12.2.4 Gathering information (437)
      • 12.2.5 Preliminary evaluations (438)
    • 12.3. Forensic investigation (439)
      • 12.3.1 Investigative plan (439)
      • Figure 12.4 (440)
      • 12.3.2 Parties and communications (440)
      • 12.3.3 Design errors (441)
      • 12.3.4 Defects of fabrication and assembly (442)
      • 12.3.5 Improper operations (443)
      • 12.3.6 Defects due to deterioration, maintenance and repairs (444)
      • 12.3.7 Defects in the bridge (444)
      • 12.3.8 Structural analysis (445)
      • 12.3.9 Laboratory analysis (446)
      • 12.3.10 Reporting (447)
    • 12.4. Case studies (447)
      • 12.4.1 Inconsistent load path (447)
      • Figure 12.5 (448)
      • 12.4.2 Inconsistent execution of field splices (449)
      • Figure 12.6 (449)
      • 12.4.3 Inadequate communications (450)
      • Figure 12.7 (450)
      • Figure 12.8 (451)
      • 12.4.4 Excessive extraction of geometry adjustment devices (451)
      • Figure 12.9 (452)
      • 12.4.5 Inadequate bracing (452)
      • 12.4.6 Instability of temporary piers (452)
      • Figure 12.10 (453)
      • Figure 12.11 (454)
      • 12.4.7 Distress of midspan closure joints (454)
      • Figure 12.12 (455)
      • Figure 12.13 (455)
    • References (456)
      • ASTM (2012) (456)
      • Harridge S (2011) (456)
      • Homsi EH (2012a) (456)
      • Homsi EH (2012b) (456)
      • Ratay R (2009) (456)
      • Reason J (1990) (456)
      • Rosignoli M (2002) (456)
      • Rosignoli M (2007) (456)
      • Rosignoli M (2010) (456)
      • Rosignoli M (2011a) (456)
      • Rosignoli M (2011b) (456)
      • Vaughan D (1996) (456)
  • 014 (457)
    • Glossary (457)
  • 015 (467)
    • Further reading
      • BSI (2009) (467)
      • International Federation for Structural Concrete (FIB) (1990) (467)
      • Standards Association of Australia (SAA) (2007) (467)
  • 016 (468)
    • Index (468)
Loading...