کتابخانه مرکزی دانشگاه صنعتی شریف
    • [نمايش بزرگتر]
    • [نمايش کوچکتر]
  • صفحه 
     از  0
  • [صفحه قبل]
  • [صفحه بعد]
  • [نمایش تمام صفحه]
  • [بستن]
 
Aircraft control and simulation : dynamics, controls design, and autonomous systems
Stevens, Brian L.,

اطلاعات کتابشناختی

Aircraft control and simulation : dynamics, controls design, and autonomous systems
Author :   Stevens, Brian L.,
Publisher :   John Wiley & Sons,
Pub. Year  :   2015
Subjects :   Airplanes -- Control systems.
Call Number :   ‭TL 678 .S74 2015

جستجو در محتوا

ترتيب

فهرست مطالب

  • Cover (1)
  • Title Page (5)
  • Copyright (6)
  • Contents (9)
  • Preface (13)
  • Chapter 1 The Kinematics and Dynamics of Aircraft Motion (15)
    • 1.1 Introduction (15)
    • 1.2 Vector Operations (17)
      • Definitions and Notation (17)
      • Vector Properties (18)
      • Rotation of a Vector (20)
    • 1.3 Matrix Operations on Vector Coordinates (21)
      • The Scalar Product (21)
      • The Cross-Product Matrix (22)
      • Coordinate Rotation, the DCM (22)
      • Direction Cosine Matrix Properties (24)
      • Euler Rotations (25)
      • Rotations Describing Aircraft Attitude (25)
      • Euler Angles from the DCM (26)
      • Linear Transformations (27)
      • Eigenvalues and Eigenvectors (28)
      • Euler's Rotation Theorem (29)
    • 1.4 Rotational Kinematics (30)
      • The Derivative of a Vector (30)
      • Angular Velocity as a Vector (31)
      • Vector Derivatives and Rotation (31)
      • Euler Angle Kinematics (33)
    • 1.5 Translational Kinematics (34)
      • Velocity and Acceleration in Moving Frames (34)
      • Acceleration Relative to Earth (36)
    • 1.6 Geodesy, Coordinate Systems,~Gravity (37)
      • Introduction (37)
      • The Shape of the Earth, WGS-84 (37)
      • Frames, Earth-Centered Coordinates, Latitude and Longitude (39)
      • Local Coordinate Systems (41)
      • Radii of Curvature (41)
      • Trigonometric Relationships for the Spheroid (43)
      • Cartesian/Polar Coordinate Conversions (43)
      • Earth-Related Coordinate Transformations (45)
      • Gravitation and Gravity (45)
      • Gravitation and Accelerometers (47)
    • 1.7 Rigid-Body Dynamics (48)
      • Angular Motion (49)
      • Translational Motion of the Center of Mass (53)
    • 1.8 Advanced Topics (58)
      • Poisson's Kinematical Equations (58)
      • The Equation of Coriolis (59)
      • Quaternions (59)
      • The Oblate Rotating-Earth 6-DoF Equations (68)
    • References (72)
    • Problems (73)
  • Chapter 2 Modeling the Aircraft (77)
    • 2.1 Introduction (77)
    • 2.2 Basic Aerodynamics (78)
      • Airfoil Section Aerodynamics (78)
      • Finite Wings (85)
      • Aircraft Configurations (87)
    • 2.3 Aircraft Forces And Moments (89)
      • Definition of Axes and Angles (89)
      • Definition of Forces and Moments (91)
      • Force and Moment Coefficients (93)
      • The Aerodynamic Derivatives (94)
      • Aerodynamic Coefficient Measurement and Estimation (96)
      • Component Buildup (97)
      • Drag Coefficient, CD (97)
      • Lift Coefficient, CL (100)
      • Sideforce Coefficient, CY (104)
      • Rolling Moment (105)
      • Control Effects on Rolling Moment (107)
      • Pitching Moment (108)
      • Control Effects on Pitching Moment (110)
      • Yawing Moment (111)
      • Control Effects on Yawing Moment (113)
      • Data Handling (114)
    • 2.4 Static Analysis (115)
      • Static Equilibrium (115)
      • Effect of the Horizontal Tail (117)
      • Static Stability Analysis in Pitch (118)
      • Neutral Point (121)
    • 2.5 The Nonlinear Aircraft Model (122)
      • Model Equations (123)
      • Decoupling of the Nonlinear Equations/3-DOF Longitudinal Model (129)
    • 2.6 Linear Models And The Stability Derivatives (130)
      • Singular Points and Steady-State Flight (131)
      • Linearization (133)
      • The Decoupled Linear State Equations (140)
      • The Dimensionless Stability and Control Derivatives (142)
      • Description of the Longitudinal Dimensionless Derivatives (145)
      • Description of the Lateral-Directional Dimensionless Derivatives (150)
    • 2.7 Summary (151)
    • References (152)
    • Problems (153)
  • Chapter 3 Modeling, Design, and Simulation Tools (156)
    • 3.1 Introduction (156)
    • 3.2 State-Space Models (158)
      • Models of Mechanical and Electrical Systems (158)
      • Reduction of Differential Equations to State-Space Form (161)
      • Time-Domain Solution of LTI State Equations (164)
      • Modal Decomposition (166)
      • Laplace Transform Solution of LTI State Equations (167)
    • 3.3 Transfer Function Models (169)
      • Derivation of Transfer Functions; Poles and Zeros (169)
      • Interpretation of the SISO Transfer Function (171)
      • Transfer Function Examples and Standard Forms (174)
      • Frequency Response (177)
      • Time Response (182)
    • 3.4 Numerical Solution Of The State Equations (184)
      • Introduction (184)
      • Runge-Kutta Methods (184)
      • Linear Multistep Methods (187)
      • Stability, Accuracy, and Stiff Systems (188)
      • Choice of Integration Algorithm (188)
      • Time-History Simulation (189)
    • 3.5 Aircraft Models For Simulation (193)
      • Simulation Issues (193)
      • A Simple Longitudinal Model (193)
      • A Six-Degree-of-Freedom Nonlinear Aircraft Model (195)
    • 3.6 Steady-State Flight (199)
      • The Rate-of-Climb Constraint (201)
      • The Turn Coordination Constraint (201)
      • The Steady-State Trim Algorithm (202)
      • Trimmed Conditions for Studying Aircraft Dynamics (207)
      • Flight Simulation Examples (209)
    • 3.7 Numerical Linearization (213)
      • Theory of Linearization (213)
      • Algorithm and Examples (214)
    • 3.8 Aircraft Dynamic Behavior (219)
      • Modal Decomposition Applied to Aircraft Dynamics (219)
      • Interpretation of Aircraft Transfer Functions (222)
    • 3.9 Feedback Control (227)
      • Introduction (227)
      • Feedback Configurations and Closed-Loop Equations (228)
      • Steady-State Error and System Type (233)
      • Stability (235)
      • Types of Compensation (238)
      • SISO Root-Locus Design (240)
      • Frequency-Domain Design (247)
    • 3.10 Summary (255)
    • References (255)
    • Problems (257)
  • Chapter 4 Aircraft Dynamics and Classical Control Design (264)
    • 4.1 Introduction (264)
      • Historical Perspective (264)
      • The Need for Automatic Control Systems (268)
      • The Functions of the Automatic Control Systems (270)
    • 4.2 Aircraft Rigid-Body Modes (271)
      • Algebraic Derivation of Longitudinal Transfer Functions and Modes (272)
      • The Short-Period Approximation (273)
      • The Phugoid Approximation (275)
      • Accuracy of the Short-Period and Phugoid Approximations (277)
      • Pitch Stability (279)
      • Algebraic Derivation of Lateral-Directional Transfer Functions (280)
      • The Dutch Roll Approximation (281)
      • The Spiral and Roll Subsidence Approximations (283)
      • Spiral Stability (284)
      • Accuracy of the Lateral-Mode Approximations (285)
      • Mode Variation from the Nonlinear Model (286)
    • 4.3 The Handling-Qualities Requirements (288)
      • Background (288)
      • Pole-Zero Specifications (290)
      • Frequency-Response Specifications (292)
      • Time-Response Specifications (293)
      • Requirements Based on Human Operator Models (294)
      • Other Requirements (296)
      • The Military Flying Qualities Specifications (297)
    • 4.4 Stability Augmentation (301)
      • Pitch-Axis Stability Augmentation (301)
      • Lateral-Directional Stability Augmentation/Yaw Damper (308)
    • 4.5 Control Augmentation Systems (317)
      • Pitch-Rate Control Augmentation Systems (318)
      • Normal Acceleration Control Augmentation Systems (322)
      • Lateral-Directional Control Augmentation (329)
    • 4.6 Autopilots (336)
      • Pitch-Attitude Hold (336)
      • Altitude Hold/Mach Hold (343)
      • Automatic Landing Systems (347)
      • Roll-Angle-Hold Autopilots (353)
      • Turn Coordination and Turn Compensation (356)
      • Autopilot Navigational Modes (357)
    • 4.7 Nonlinear Simulation (358)
      • Flare Control (371)
    • 4.8 Summary (385)
    • References (386)
    • Problems (388)
  • Chapter 5 Modern Design Techniques (391)
    • 5.1 Introduction (391)
      • Limitations of Classical Control (392)
      • Philosophy of Modern Control (392)
      • Fundamental Design Problems (393)
    • 5.2 Assignment Of Closed-Loop Dynamics (395)
      • State Feedback and Output Feedback (396)
      • Modal Decomposition (398)
      • Eigenstructure Assignment by Full State Feedback (401)
      • Eigenstructure Assignment by Output Feedback (405)
    • 5.3 Linear Quadratic Regulator With Output Feedback (411)
      • Quadratic Performance Index (412)
      • Solution of the LQR Problem (413)
      • Determining the Optimal Feedback Gain (416)
      • Selection of the PI Weighting Matrices (419)
    • 5.4 Tracking A Command (427)
      • Tracker with Desired Structure (429)
      • LQ Formulation of the Tracker Problem (430)
      • Solution of the LQ Tracker Problem (434)
      • Determining the Optimal Feedback Gain (436)
    • 5.5 Modifying The Performance Index (442)
      • Constrained Feedback Matrix (443)
      • Derivative Weighting (444)
      • Time-Dependent Weighting (445)
      • A Fundamental Design Property (448)
    • 5.6 Model-Following Design (469)
      • Explicit Model-Following Control (470)
      • Implicit Model-Following Control (475)
    • 5.7 Linear Quadratic Design With Full State Feedback (484)
      • The Relevance of State Feedback (485)
      • The Riccati Equation and Kalman Gain (485)
      • Guaranteed Closed-Loop Stability (487)
    • 5.8 Dynamic Inversion Design (491)
      • Dynamic Inversion for Linear Systems (491)
      • Dynamic Inversion for Nonlinear Systems (501)
    • 5.9 Summary (506)
    • References (506)
    • Problems (509)
  • Chapter 6 Robustness and Multivariable Frequency-Domain Techniques (514)
    • 6.1 Introduction (514)
      • Modeling Errors and Stability Robustness (514)
      • Disturbances and Performance Robustness (514)
      • Classical Robust Design (515)
      • Modern Robust Design (515)
    • 6.2 Multivariable Frequency-Domain Analysis (516)
      • Sensitivity and Cosensitivity (516)
      • Multivariable Bode Plot (520)
      • Frequency-Domain Performance Specifications (525)
      • Robustness Bounds for Plant Parameter Variations (538)
    • 6.3 Robust Output-Feedback Design (539)
    • 6.4 Observers And The Kalman Filter (543)
      • Observer Design (544)
      • The Kalman Filter (551)
      • Dynamic Regulator Design Using the Separation Principle (564)
    • 6.5 Linear Quadratic Gaussian/Loop Transfer Recovery (568)
      • Guaranteed Robustness of the LQR (569)
      • Loop Transfer Recovery (572)
    • 6.6 Summary (591)
    • References (592)
    • Problems (594)
  • Chapter 7 Digital Control (598)
    • 7.1 Introduction (598)
    • 7.2 Simulation Of Digital Controllers (599)
    • 7.3 Discretization Of Continuous Controllers (602)
      • Bilinear Transformation (602)
      • Matched Pole Zero (605)
      • Digital Design Examples (605)
    • 7.4 Modified Continuous Design (612)
      • Sampling, Hold Devices, and Computation Delays (612)
      • Modified Continuous Design Procedures (618)
    • 7.5 Implementation Considerations (625)
      • Actuator Saturation and Windup (626)
      • Controller Realization Structures (630)
    • 7.6 Summary (633)
    • References (634)
    • Problems (634)
  • Chapter 8 Modeling and Simulation of Miniature Aerial Vehicles (637)
    • 8.1 Introduction (637)
      • Propellers vs. Rotors (639)
    • 8.2 Propeller/Rotor Forces And Moments (644)
      • Thrust and Torque of a Propeller/Rotor (645)
      • Computing Nonthrust Forces and Moments (650)
    • 8.3 Modeling Rotor Flapping (654)
      • Tip Path Plane Equations of Motion (654)
      • Flapping Dynamics with a Stabilizer Bar (657)
      • Forces and Moments on the Aircraft from a Flapping Rotor (658)
      • More Advanced Modeling of Rotors (659)
    • 8.4 Motor Modeling (659)
      • Internal Combustion Engine Modeling (660)
      • Electric Motor Modeling (661)
    • 8.5 Small Aerobatic Airplane Model (662)
    • 8.6 Quadrotor Model (668)
    • 8.7 Small Helicopter Model (669)
    • 8.8 Summary (674)
    • References (675)
    • Problems (675)
  • Chapter 9 Adaptive Control With Application to Miniature Aerial Vehicles (678)
    • 9.1 Introduction (678)
    • 9.2 Model Reference Adaptive Control Based On Dynamic Inversion (679)
    • 9.3 Neural Network Adaptive Control (682)
      • Universal Approximation Theorem (683)
    • 9.4 Limited Authority Adaptive Control (687)
      • Pseudocontrol Hedging (688)
      • Adaptive Control for Cascaded Systems (691)
    • 9.5 Neural Network Adaptive Control Example (693)
      • Description of an Adaptive Guidance, Navigation, and Control System for Miniature Aircraft (694)
      • Simulation Results (703)
      • Flight Test Results (713)
    • 9.6 Summary (723)
    • References (723)
    • Problems (724)
  • Appendix A F-16 Model (728)
  • Appendix B Software (737)
  • Index (747)
  • EULA (764)
Loading...