کتابخانه مرکزی دانشگاه صنعتی شریف
    • [نمايش بزرگتر]
    • [نمايش کوچکتر]
  • صفحه 
     از  0
  • [صفحه قبل]
  • [صفحه بعد]
  • [نمایش تمام صفحه]
  • [بستن]
 
مدیریت روندهای سفر پس از وقوع زلزله های شدید
محبی فرد، رسول Mohebifard, Rasoul

اطلاعات کتابشناختی

مدیریت روندهای سفر پس از وقوع زلزله های شدید
پدیدآور اصلی :   محبی فرد، رسول Mohebifard, Rasoul
ناشر :   دانشگاه صنعتی شریف
سال انتشار  :   1393
موضوع ها :   زلزله Earthquake مدیریت بحران Disaster Management الگوریتم توده ای مورچه ها Ant Colony...
شماره راهنما :   ‭09-46874

جستجو در محتوا

ترتيب

فهرست مطالب

  • Cover page (2)
  • Half Title page (2)
  • Title page (3)
  • Copyright page (4)
  • Dedication (5)
  • Brief Contents (6)
  • Contents (8)
  • Preface (26)
  • Part I Stellar Structure (30)
    • 1 Some Properties of Stars (31)
      • 1.1 Luminosities and Magnitudes (31)
        • 1.1.1 Stellar Luminosities (32)
        • 1.1.2 Photon Luminosities (33)
        • 1.1.3 Apparent Magnitudes (33)
        • 1.1.4 The Parsec Distance Unit (36)
        • 1.1.5 Absolute Magnitudes (38)
        • 1.1.6 Bolometric Magnitudes (38)
      • 1.2 Stars as Blackbody Radiators (39)
        • 1.2.1 Radiation Laws (39)
        • 1.2.2 Effective Temperatures (41)
        • 1.2.3 Stellar Radii from Effective Temperatures (43)
      • 1.3 Color Indices (44)
      • 1.4 Masses and Physical Radii of Stars (46)
      • 1.5 Binary Star Systems (47)
        • 1.5.1 Motion of Binary Systems (48)
        • 1.5.2 Radial Velocities and Masses (50)
        • 1.5.3 True Orbit for Visual Binaries (53)
        • 1.5.4 Eclipsing Binaries (54)
      • 1.6 Mass–Luminosity Relationships (56)
      • 1.7 Summary of Physical Quantities for Stars (58)
      • 1.8 Proper Motion and Space Velocities (58)
      • 1.9 Stellar Populations (60)
        • 1.9.1 Population I and Population II (60)
        • 1.9.2 Population III (61)
      • 1.10 Variable Stars and Period–Luminosity Relations (62)
        • 1.10.1 Cepheid Variables (62)
        • 1.10.2 RR Lyra Variables (64)
        • 1.10.3 Pulsational Instabilities (64)
        • 1.10.4 Pulsations and Free-Fall Timescales (66)
      • Background and Further Reading (67)
      • Problems (67)
    • 2 The Hertzsprung–Russell Diagram (72)
      • 2.1 Spectral Classes (72)
        • 2.1.1 Excitation and the Boltzmann Formula (73)
        • 2.1.2 Ionization and the Saha Equations (73)
        • 2.1.3 Ionization of Hydrogen and Helium (76)
        • 2.1.4 Optimal Temperatures for Spectral Lines (78)
        • 2.1.5 The Spectral Sequence (80)
      • 2.2 HR Diagram for Stars Near the Sun (83)
        • 2.2.1 Solving the Distance Problem (84)
        • 2.2.2 Features of the HR Diagram (86)
      • 2.3 HR Diagram for Clusters (86)
      • 2.4 Luminosity Classes (89)
        • 2.4.1 Pressure Broadening of Spectral Lines (93)
        • 2.4.2 Inferring Luminosity Class from Surface Density (94)
      • 2.5 Spectroscopic Parallax (94)
      • 2.6 The HR Diagram and Stellar Evolution (95)
      • Background and Further Reading (96)
      • Problems (96)
    • 3 Stellar Equations of State (103)
      • 3.1 Equations of State (104)
      • 3.2 The Pressure Integral (104)
      • 3.3 Ideal Gas Equation of State (105)
        • 3.3.1 Internal Energy (107)
        • 3.3.2 The Adiabatic Index (109)
      • 3.4 Mean Molecular Weights (110)
        • 3.4.1 Concentration Variables (111)
        • 3.4.2 Partially Ionized Gases (111)
        • 3.4.3 Fully-Ionized Gases (113)
        • 3.4.4 Shorthand Notation and Approximations (114)
      • 3.5 Polytropic Equations of State (117)
        • 3.5.1 Polytropic Processes (117)
        • 3.5.2 Properties of Polytropes (118)
      • 3.6 Adiabatic Equations of State (120)
      • 3.7 Equations of State for Degenerate Gases (121)
        • 3.7.1 Pressure Ionization (123)
        • 3.7.2 Distinguishing Classical and Quantum Gases (126)
        • 3.7.3 Nonrelativistic Classical and Quantum Gases (128)
        • 3.7.4 Ultrarelativistic Classical and Quantum Gases (131)
        • 3.7.5 Transition from a Classical to Quantum Gas (132)
      • 3.8 The Degenerate Electron Gas (133)
        • 3.8.1 Fermi Momentum and Fermi Energy (133)
        • 3.8.2 Equation of State for Nonrelativistic Electrons (135)
        • 3.8.3 Equation of State for Ultrarelativistic Electrons (137)
      • 3.9 High Gas Density and Stellar Structure (138)
      • 3.10 Equation of State for Radiation (140)
      • 3.11 Matter and Radiation Mixtures (141)
        • 3.11.1 Mixtures of Ideal Gases and Radiation (141)
        • 3.11.2 Adiabatic Systems of Gas and Radiation (142)
        • 3.11.3 Radiation and Gravitational Stability (144)
      • Background and Further Reading (144)
      • Problems (144)
    • 4 Hydrostatic and Thermal Equilibrium (153)
      • 4.1 Newtonian Gravitation (153)
      • 4.2 Conditions for Hydrostatic Equilibrium (154)
      • 4.3 Lagrangian and Eulerian Descriptions (156)
        • 4.3.1 Lagrangian Formulation of Hydrostatics (156)
        • 4.3.2 Contrasting Lagrangian and Eulerian Descriptions (159)
      • 4.4 Dynamical Timescales (160)
      • 4.5 The Virial Theorem for an Ideal Gas (161)
      • 4.6 Thermal Equilibrium (164)
      • 4.7 Total Energy for a Star (166)
      • 4.8 Stability and Heat Capacity (167)
        • 4.8.1 Temperature Response to Energy Fluctuations (167)
        • 4.8.2 Heating Up while Cooling Down (169)
      • 4.9 The Kelvin–Helmholtz Timescale (170)
      • Background and Further Reading (174)
      • Problems (175)
    • 5 Thermonuclear Reactions in Stars (181)
      • 5.1 Nuclear Energy Sources (181)
        • 5.1.1 The Curve of Binding Energy (182)
        • 5.1.2 Masses and Mass Excesses (184)
        • 5.1.3 Q-Values (185)
        • 5.1.4 Efficiency of Hydrogen Burning (186)
      • 5.2 Thermonuclear Hydrogen Burning (187)
        • 5.2.1 The Proton–Proton Chains (188)
        • 5.2.2 The CNO Cycle (189)
        • 5.2.3 Competition of PP Chains and the CNO Cycle (191)
      • 5.3 Cross Sections and Reaction Rates (193)
        • 5.3.1 Reaction Cross Sections (194)
        • 5.3.2 Rates from Cross Sections (194)
      • 5.4 Thermally Averaged Reaction Rates (195)
      • 5.5 Parameterization of Cross Sections (196)
      • 5.6 Nonresonant Cross Sections (197)
        • 5.6.1 Coulomb Barriers (198)
        • 5.6.2 Barrier Penetration Factors (199)
        • 5.6.3 Astrophysical S-Factors (200)
        • 5.6.4 The Gamow Window (201)
      • 5.7 Resonant Cross Sections (204)
      • 5.8 Calculations with Rate Libraries (206)
      • 5.9 Total Rate of Energy Production (206)
      • 5.10 Temperature and Density Exponents (207)
      • 5.11 Neutron Reactions and Weak Interactions (208)
      • 5.12 Reaction Selection Rules (211)
        • 5.12.1 Angular Momentum Conservation (212)
        • 5.12.2 Isotopic Spin Conservation (212)
        • 5.12.3 Parity Conservation (212)
      • Background and Further Reading (213)
      • Problems (214)
    • 6 Stellar Burning Processes (218)
      • 6.1 Reactions of the Proton–Proton Chains (218)
        • 6.1.1 Reactions of PP-I (220)
        • 6.1.2 Branching for PP-II and PP-III (221)
        • 6.1.3 Effective Q-Values (222)
      • 6.2 Reactions of the CNO Cycle (223)
        • 6.2.1 The CNO Cycle in Operation (225)
        • 6.2.2 Rate of CNO Energy Production (227)
      • 6.3 The Triple-α Process (227)
        • 6.3.1 Equilibrium Population of 8Be (229)
        • 6.3.2 Formation of the Excited State in 12C (231)
        • 6.3.3 Formation of the Ground State in 12C (232)
        • 6.3.4 Energy Production in the Triple-α Reaction (233)
      • 6.4 Helium Burning to C, O, and Ne (234)
        • 6.4.1 Oxygen and Neon Production (235)
        • 6.4.2 The Outcome of Helium Burning (237)
      • 6.5 Advanced Burning Stages (239)
        • 6.5.1 Carbon, Oxygen, and Neon Burning (240)
        • 6.5.2 Silicon Burning (241)
      • 6.6 Timescales for Advanced Burning (245)
      • Background and Further Reading (246)
      • Problems (247)
    • 7 Energy Transport in Stars (250)
      • 7.1 Modes of Energy Transport (250)
      • 7.2 Diffusion of Energy (251)
      • 7.3 Energy Transport by Conduction (254)
      • 7.4 Radiative Energy Transport (255)
        • 7.4.1 Thomson Scattering (256)
        • 7.4.2 Conduction in Degenerate Matter (257)
        • 7.4.3 Absorption of Photons (257)
        • 7.4.4 Stellar Opacities (259)
        • 7.4.5 General Contributions to Stellar Opacity (260)
      • 7.5 Energy Transport by Convection (263)
      • 7.6 Conditions for Convective Instability (264)
        • 7.6.1 The Schwarzschild Instability (265)
        • 7.6.2 The Ledoux Instability (266)
        • 7.6.3 Salt-Finger Instability (267)
      • 7.7 Critical Temperature Gradient for Convection (269)
        • 7.7.1 Convection and the Adiabatic Index (271)
        • 7.7.2 Convection and the Pressure Gradient (272)
      • 7.8 Stellar Temperature Gradients (273)
        • 7.8.1 Choice between Radiative or Convective Transport (273)
        • 7.8.2 Radiative Temperature Gradients (274)
      • 7.9 Mixing-Length Treatment of Convection (275)
        • 7.9.1 Pressure Scale Height (276)
        • 7.9.2 The Mixing-Length Philosophy (277)
        • 7.9.3 Analysis of Solar Convection (278)
      • 7.10 Examples of Stellar Convective Regions (280)
        • 7.10.1 Convection in Stellar Cores (282)
        • 7.10.2 Surface Ionization Zones (283)
      • 7.11 Energy Transport by Neutrino Emission (284)
        • 7.11.1 Neutrino Production Mechanisms (285)
        • 7.11.2 Classification and Rates (290)
        • 7.11.3 Coherent Neutrino Scattering (294)
      • Background and Further Reading (294)
      • Problems (295)
    • 8 Summary of Stellar Equations (300)
      • 8.1 The Basic Equations Governing Stars (300)
        • 8.1.1 Hydrostatic Equilibrium (300)
        • 8.1.2 Luminosity (301)
        • 8.1.3 Temperature Gradient (301)
        • 8.1.4 Changes in Isotopic Composition (302)
        • 8.1.5 Equation of State (302)
      • 8.2 Solution of the Stellar Equations (303)
      • 8.3 Important Stellar Timescales (304)
      • 8.4 Hydrostatic Equilibrium for Polytropes (306)
        • 8.4.1 Lane–Emden Equation and Solutions (306)
        • 8.4.2 Computing Physical Quantities (310)
        • 8.4.3 Limitations of the Lane–Emden Approximation (311)
      • 8.5 Numerical Solution of the Stellar Equations (311)
      • Background and Further Reading (312)
      • Problems (312)
  • Part II Stellar Evolution (315)
    • 9 The Formation of Stars (316)
      • 9.1 Evidence for Starbirth in Nebulae (316)
      • 9.2 Jeans Criterion for Gravitational Collapse (319)
      • 9.3 Fragmentation of Collapsing Clouds (321)
      • 9.4 Stability in Adiabatic Approximation (322)
        • 9.4.1 Dependence on Adiabatic Exponents (323)
        • 9.4.2 Physical Interpretation (324)
      • 9.5 The Collapse of a Protostar (325)
        • 9.5.1 Initial Free-Fall Collapse (325)
        • 9.5.2 A Little More Realism (326)
      • 9.6 Onset of Hydrostatic Equilibrium (327)
      • 9.7 Termination of Fragmentation (330)
      • 9.8 Hayashi Tracks (331)
        • 9.8.1 Fully Convective Stars (332)
        • 9.8.2 Development of a Radiative Core (333)
        • 9.8.3 Dependence on Composition and Mass (333)
      • 9.9 Limiting Lower Mass for Stars (334)
      • 9.10 Brown Dwarfs (335)
        • 9.10.1 Spectroscopic Signatures (336)
        • 9.10.2 Stars, Brown Dwarfs, and Planets (337)
      • 9.11 Limiting Upper Mass for Stars (338)
        • 9.11.1 Eddington Luminosity (338)
        • 9.11.2 Estimate of Upper Limiting Mass (339)
      • 9.12 The Initial Mass Function (341)
      • 9.13 Protoplanetary Disks (343)
      • 9.14 Exoplanets (345)
        • 9.14.1 The Doppler Spectroscopy Method (346)
        • 9.14.2 Transits of Extrasolar Planets (347)
      • Background and Further Reading (347)
      • Problems (347)
    • 10 Life and Times on the Main Sequence (354)
      • 10.1 The Standard Solar Model (354)
        • 10.1.1 Composition of the Sun (355)
        • 10.1.2 Energy Generation and Composition Changes (356)
        • 10.1.3 Hydrostatic Equilibrium (356)
        • 10.1.4 Energy Transport (356)
        • 10.1.5 Constraints and Solution (358)
      • 10.2 Helioseismology (364)
        • 10.2.1 Solar p-Modes and g-Modes (364)
        • 10.2.2 Surface Vibrations and the Solar Interior (365)
      • 10.3 Solar Neutrino Production (365)
        • 10.3.1 Sources of Solar Neutrinos (366)
        • 10.3.2 Testing the Standard Solar Model with Neutrinos (367)
      • 10.4 The Solar Electron-Neutrino Deficit (367)
        • 10.4.1 The Davis Chlorine Experiment (368)
        • 10.4.2 The Gallium Experiments (369)
        • 10.4.3 Super Kamiokande (369)
        • 10.4.4 Astrophysics and Particle Physics Explanations (371)
      • 10.5 Evolution of Stars on the Main Sequence (373)
      • 10.6 Timescale for Main Sequence Lifetimes (375)
      • 10.7 Evolutionary Timescales (377)
      • 10.8 Evolution Away from the Main Sequence (378)
        • 10.8.1 Three Categories of Post Main Sequence Evolution (380)
        • 10.8.2 Examples of Post Main Sequence Evolution (381)
      • Background and Further Reading (384)
      • Problems (384)
    • 11 Neutrino Flavor Oscillations (389)
      • 11.1 Overview of the Solar Neutrino Problem (389)
      • 11.2 Weak Interactions and Neutrino Physics (390)
        • 11.2.1 Matter and Force Fields of the Standard Model (392)
        • 11.2.2 Masses for Particles of the Standard Model (393)
        • 11.2.3 Charged and Neutral Currents (395)
      • 11.3 Flavor Mixing (397)
        • 11.3.1 Flavor Mixing in the Quark Sector (397)
        • 11.3.2 Flavor Mixing in the Leptonic Sector (398)
      • 11.4 Implications of a Finite Neutrino Mass (399)
      • 11.5 Neutrino Vacuum Oscillations (399)
        • 11.5.1 Mixing for Two Neutrino Flavors (400)
        • 11.5.2 The Vacuum Oscillation Length (401)
        • 11.5.3 Time-Averaged or Classical Probabilities (403)
      • 11.6 Neutrino Oscillations with Three Flavors (405)
        • 11.6.1 CP Violation in Neutrino Oscillations (406)
        • 11.6.2 The Neutrino Mass Hierarchy (408)
        • 11.6.3 Recovering 2-Flavor Mixing (409)
      • 11.7 Neutrino Masses and Particle Physics (410)
      • Background and Further Reading (410)
      • Problems (410)
    • 12 Solar Neutrinos and the MSW Effect (415)
      • 12.1 Propagation of Neutrinos in Matter (415)
        • 12.1.1 Matrix Elements for Interaction with Matter (416)
        • 12.1.2 The Effective Neutrino Mass in Medium (417)
      • 12.2 The Mass Matrix (419)
        • 12.2.1 Propagation of Left-Handed Neutrinos (419)
        • 12.2.2 Evolution in the Flavor Basis (420)
        • 12.2.3 Propagation in Matter (422)
      • 12.3 Solutions in Matter (423)
        • 12.3.1 Mass Eigenvalues for Constant Density (424)
        • 12.3.2 The Matter Mixing Angle θm (424)
        • 12.3.3 The Matter Oscillation Length Lm (425)
        • 12.3.4 Flavor Conversion in Constant-Density Matter (426)
      • 12.4 The MSW Resonance Condition (427)
      • 12.5 Resonant Flavor Conversion (431)
      • 12.6 Propagation in Matter of Varying Density (434)
      • 12.7 The Adiabatic Criterion (436)
      • 12.8 MSW Neutrino Flavor Conversion (437)
        • 12.8.1 Flavor Conversion in Adiabatic Approximation (437)
        • 12.8.2 Adiabatic Conversion and the Mixing Angle (439)
        • 12.8.3 Resonant Conversion for Large or Small θ (440)
        • 12.8.4 Energy Dependence of Flavor Conversion (440)
      • 12.9 Resolution of the Solar Neutrino Problem (441)
        • 12.9.1 Super-K Observation of Flavor Oscillation (441)
        • 12.9.2 SNO Observation of Neutral Current Interactions (442)
        • 12.9.3 KamLAND Constraints on Mixing Angles (445)
        • 12.9.4 Large Mixing Angles and the MSW Mechanism (446)
        • 12.9.5 A Tale of Large and Small Mixing Angles (446)
      • Background and Further Reading (447)
      • Problems (447)
    • 13 Evolution of Lower-Mass Stars (451)
      • 13.1 Endpoints of Stellar Evolution (451)
      • 13.2 Shell Burning (452)
      • 13.3 Stages of Red Giant Evolution (455)
      • 13.4 The Red Giant Branch (459)
        • 13.4.1 The Schönberg–Chandrasekhar Limit (459)
        • 13.4.2 Crossing the Hertzsprung Gap (460)
      • 13.5 Helium Ignition (461)
        • 13.5.1 Core Equation of State and Helium Ignition (461)
        • 13.5.2 Thermonuclear Runaways in Degenerate Matter (462)
        • 13.5.3 The Helium Flash (462)
      • 13.6 Horizontal Branch Evolution (463)
        • 13.6.1 Life on the Helium Main Sequence (463)
        • 13.6.2 Leaving the Horizontal Branch (464)
      • 13.7 Asymptotic Giant Branch Evolution (465)
        • 13.7.1 Thermal Pulses (466)
        • 13.7.2 Slow Neutron Capture (472)
        • 13.7.3 Development of Deep Convective Envelopes (476)
        • 13.7.4 Mass Loss (477)
      • 13.8 Ejection of the Envelope (478)
      • 13.9 White Dwarfs and Planetary Nebulae (478)
      • 13.10 Stellar Dredging Operations (480)
      • 13.11 The Sun’s Red Giant Evolution (482)
      • 13.12 Overview for Low-Mass Stars (484)
      • Background and Further Reading (485)
      • Problems (485)
    • 14 Evolution of Higher-Mass Stars (490)
      • 14.1 Unique Features of More Massive Stars (490)
      • 14.2 Advanced Burning Stages in Massive Stars (491)
      • 14.3 Envelope Loss from Massive Stars (493)
        • 14.3.1 Wolf–Rayet Stars (493)
        • 14.3.2 The Strange Case of η Carinae (496)
      • 14.4 Neutrino Cooling of Massive Stars (496)
        • 14.4.1 Local and Nonlocal Cooling (497)
        • 14.4.2 Neutrino Cooling and the Pace of Stellar Evolution (497)
      • 14.5 Massive Population III Stars (498)
      • 14.6 Evolutionary Endpoints for Massive Stars (499)
        • 14.6.1 Observational and Theoretical Characteristics (500)
        • 14.6.2 Black Holes from Failed Supernovae? (500)
        • 14.6.3 Gravitational Waves and Stellar Evolution (502)
      • 14.7 Summary: Evolution after the Main Sequence (503)
      • 14.8 Stellar Lifecycles (504)
      • Background and Further Reading (505)
      • Problems (506)
    • 15 Stellar Pulsations and Variability (509)
      • 15.1 The Instability Strip (509)
      • 15.2 Adiabatic Radial Pulsations (511)
      • 15.3 Pulsating Variables as Heat Engines (513)
      • 15.4 Non-adiabatic Radial Pulsations (514)
        • 15.4.1 Thermodynamics of Sustained Pulsation (514)
        • 15.4.2 Opacity and the κ-Mechanism (516)
        • 15.4.3 Partial Ionization Zones and the Instability Strip (517)
        • 15.4.4 The ε-Mechanism and Massive Stars (519)
      • 15.5 Non-radial Pulsation (520)
      • Background and Further Reading (520)
      • Problems (521)
    • 16 White Dwarfs and Neutron Stars (522)
      • 16.1 Properties of White Dwarfs (522)
        • 16.1.1 Density and Gravity (523)
        • 16.1.2 Equation of State (523)
        • 16.1.3 Ingredients of a White Dwarf Description (525)
      • 16.2 Polytropic Models of White Dwarfs (526)
        • 16.2.1 Low-Mass White Dwarfs (527)
        • 16.2.2 High-Mass White Dwarfs (527)
        • 16.2.3 Heuristic Derivation of the Chandrasekhar Limit (531)
        • 16.2.4 Effective Adiabatic Index and Gravitational Stability (533)
      • 16.3 Internal Structure of White Dwarfs (535)
        • 16.3.1 Temperature Variation (536)
        • 16.3.2 An Insulating Blanket around a Metal Ball (537)
      • 16.4 Cooling of White Dwarfs (538)
      • 16.5 Crystallization of White Dwarfs (539)
      • 16.6 Beyond White Dwarf Masses (541)
      • 16.7 Basic Properties of Neutron Stars (541)
        • 16.7.1 Sizes and Masses (542)
        • 16.7.2 Internal Structure (544)
        • 16.7.3 Cooling of Neutron Stars (546)
        • 16.7.4 Evidence for Superfluidity in Neutron Stars (548)
      • 16.8 Hydrostatic Equilibrium in General Relativity (551)
        • 16.8.1 The Oppenheimer–Volkov Equations (551)
        • 16.8.2 Comparison with Newtonian Gravity (552)
      • 16.9 Pulsars (553)
        • 16.9.1 The Pulsar Mechanism (553)
        • 16.9.2 Pulsar Magnetic Fields (555)
        • 16.9.3 The Crab Pulsar (556)
        • 16.9.4 Pulsar Spindown and Glitches (557)
        • 16.9.5 Millisecond Pulsars (557)
        • 16.9.6 Binary Pulsars (561)
      • 16.10 Magnetars (562)
      • Background and Further Reading (563)
      • Problems (563)
    • 17 Black Holes (568)
      • 17.1 The Failure of Newtonian Gravity (568)
      • 17.2 The General Theory of Relativity (569)
        • 17.2.1 General Covariance (569)
        • 17.2.2 The Principle of Equivalence (570)
        • 17.2.3 Curved Spacetime and Tensors (571)
        • 17.2.4 Curvature and the Strength of Gravity (571)
      • 17.3 Some Important General Relativistic Solutions (572)
        • 17.3.1 The Einstein Equation (573)
        • 17.3.2 Line Elements and Metrics (574)
        • 17.3.3 Minkowski Spacetime (574)
        • 17.3.4 Schwarzschild Spacetime (576)
        • 17.3.5 Kerr Spacetime (577)
      • 17.4 Evidence for Black Holes (579)
        • 17.4.1 Compact Objects in X-ray Binaries (580)
        • 17.4.2 Causality Constraints (583)
        • 17.4.3 The Black Hole Candidate Cygnus X-1 (584)
      • 17.5 Black Holes and Gravitational Waves (587)
      • 17.6 Supermassive Black Holes (588)
      • 17.7 Intermediate-Mass and Mini Black Holes (589)
      • 17.8 Proof of the Pudding: Event Horizons (590)
      • 17.9 Some Measured Black Hole Masses (593)
      • Background and Further Reading (593)
      • Problems (594)
  • Part III Accretion, Mergers, and Explosions (596)
    • 18 Accreting Binary Systems (597)
      • 18.1 Classes of Accretion (597)
      • 18.2 Roche-lobe Overflow (598)
        • 18.2.1 The Roche Potential (598)
        • 18.2.2 Lagrange Points (599)
        • 18.2.3 Roche Lobes (601)
      • 18.3 Classification of Binary Star Systems (602)
      • 18.4 Accretion Streams and Accretion Disks (603)
        • 18.4.1 Gas Motion (603)
        • 18.4.2 Initial Accretion Velocity (604)
        • 18.4.3 General Properties of Roche-Overflow Accretion (606)
        • 18.4.4 Disk Dynamics (607)
      • 18.5 Wind-Driven Accretion (609)
      • 18.6 Classification of X-Ray Binaries (610)
        • 18.6.1 High-Mass X-Ray Binaries (611)
        • 18.6.2 Low-Mass X-Ray Binaries (611)
        • 18.6.3 Suppression of Accretion for Intermediate Masses (612)
      • 18.7 Accretion Power (612)
        • 18.7.1 Maximum Energy Release in Accretion (613)
        • 18.7.2 Limits on Accretion Rates (614)
        • 18.7.3 Accretion Temperatures (614)
        • 18.7.4 Maximum Efficiency for Energy Extraction (615)
        • 18.7.5 Storing Energy in Accretion Disks (616)
      • 18.8 Some Accretion-Induced Phenomena (617)
      • 18.9 Accretion and Stellar Evolution (618)
        • 18.9.1 The Algol Paradox (618)
        • 18.9.2 Blue Stragglers (620)
      • Background and Further Reading (620)
      • Problems (620)
    • 19 Nova Explosions and X-Ray Bursts (625)
      • 19.1 The Nova Mechanism (625)
        • 19.1.1 The Hot CNO Cycle (629)
        • 19.1.2 Recurrence of Novae (630)
        • 19.1.3 Nucleosynthesis in Novae (631)
      • 19.2 The X-Ray Burst Mechanism (631)
        • 19.2.1 Rapid Proton Capture (632)
        • 19.2.2 Nucleosynthesis and the rp-Process (633)
      • Background and Further Reading (634)
      • Problems (634)
    • 20 Supernovae (636)
      • 20.1 Classification of Supernovae (636)
        • 20.1.1 Type Ia (640)
        • 20.1.2 Type Ib and Type Ic (641)
        • 20.1.3 Type II (642)
      • 20.2 Thermonuclear Supernovae (643)
        • 20.2.1 The Single-Degenerate Mechanism (645)
        • 20.2.2 The Double-Degenerate Mechanism (647)
        • 20.2.3 Thermonuclear Burning in Extreme Conditions (647)
        • 20.2.4 Element and Energy Production (649)
        • 20.2.5 Late-Time Observables (651)
      • 20.3 Core Collapse Supernovae (652)
        • 20.3.1 The “Supernova Problem” (653)
        • 20.3.2 The Death of Massive Stars (654)
        • 20.3.3 Sequence of Events in Core Collapse (655)
        • 20.3.4 Neutrino Reheating (660)
        • 20.3.5 Convection and Neutrino Reheating (663)
        • 20.3.6 Convectively Unstable Regions in Supernovae (663)
        • 20.3.7 Remnants of Core Collapse (665)
      • 20.4 Supernova 1987A (666)
        • 20.4.1 The Neutrino Burst (666)
        • 20.4.2 The Progenitor was Blue! (668)
        • 20.4.3 Radioactive Decay and the Lightcurve (670)
        • 20.4.4 Evolution of the Supernova Remnant (671)
        • 20.4.5 Where is the Neutron Star? (673)
      • 20.5 Heavy Elements and the r-Process (674)
      • Background and Further Reading (677)
      • Problems (677)
    • 21 Gamma-Ray Bursts (681)
      • 21.1 The Sky in Gamma-Rays (681)
      • 21.2 Localization of Gamma-Ray Bursts (685)
      • 21.3 Generic Characteristics of Gamma-Ray Burst (687)
      • 21.4 The Importance of Ultrarelativistic Jets (690)
        • 21.4.1 Optical Depth for a Nonrelativistic Burst (691)
        • 21.4.2 Optical Depth for an Ultrarelativistic Burst (691)
        • 21.4.3 Confirmation of Large Lorentz Factors (692)
      • 21.5 Association of GRBs with Galaxies (693)
      • 21.6 Mechanisms for the Central Engine (693)
      • 21.7 Long-Period GRB and Supernovae (695)
        • 21.7.1 Types Ib and Ic Supernovae (695)
        • 21.7.2 Role of Metallicity (696)
      • 21.8 Collapsar Model of Long-Period Bursts (696)
      • 21.9 Neutron Star Mergers and Short-Period Bursts (700)
      • 21.10 Multimessenger Astronomy (702)
      • Background and Further Reading (703)
      • Problems (703)
    • 22 Gravitational Waves and Stellar Evolution (705)
      • 22.1 Gravitational Waves (705)
      • 22.2 Sample Gravitational Waveforms (708)
      • 22.3 The Gravitational Wave Event GW150914 (710)
        • 22.3.1 Observed Waveforms (711)
        • 22.3.2 The Black Hole Merger (712)
      • 22.4 A New Probe of Massive-Star Evolution (715)
        • 22.4.1 Formation of Massive Black Hole Binaries (715)
        • 22.4.2 Gravitational Waves and Massive Binary Evolution (717)
        • 22.4.3 Formation of Supermassive Black Holes (720)
      • 22.5 Listening to Multiple Messengers (722)
      • 22.6 Gravitational Waves from Neutron Star Mergers (722)
        • 22.6.1 New Insights Associated with GW170817 (725)
        • 22.6.2 The Kilonova Associated with GW170817 (728)
      • 22.7 Gravitational Wave Sources and Detectors (730)
      • Background and Further Reading (731)
      • Problems (731)
  • Appendix A Constants (733)
  • Appendix B Natural Units (737)
  • Appendix C Mean Molecular Weights (742)
  • Appendix D Reaction Libraries (744)
  • Appendix E A Mixing-Length Model (757)
  • Appendix F Quantum Mechanics (762)
  • Appendix G Using arXiv and ADS (766)
  • References (768)
  • Index (778)
Loading...