کتابخانه مرکزی دانشگاه صنعتی شریف
    • [نمايش بزرگتر]
    • [نمايش کوچکتر]
  • صفحه 
     از  0
  • [صفحه قبل]
  • [صفحه بعد]
  • [نمایش تمام صفحه]
  • [بستن]
 
Constructing quantum mechanics
Duncan, Anthony, (Professor of physics).

اطلاعات کتابشناختی

Constructing quantum mechanics
Author :   Duncan, Anthony, (Professor of physics).
Publisher :   Oxford University,
Pub. Year  :   2019
Subjects :   Quantum theory.
Call Number :   ‭QC 174 .12 .D86 2019

جستجو در محتوا

ترتيب

فهرست مطالب

  • Foreword (8)
  • Contents (12)
  • 1 Introduction (15)
  • 2 Background Material and Notation (19)
    • 2.1 Linear Systems of Ordinary Differential Equations (19)
      • 2.1.1 Constant Matrices: The Matrix Exponential (23)
      • 2.1.2 Constant Matrices: Invariant Subspacesand Estimates on Solutions (26)
      • 2.1.3 Periodic Matrices: Floquet Theory (29)
      • 2.1.4 General Matrices and Exponential Dichotomies (33)
    • 2.2 Elements of Functional Analysis (34)
      • 2.2.1 Basic Sobolev Spaces (34)
      • 2.2.2 Bounded and Closed Operators (37)
      • 2.2.3 Variational Derivatives (38)
      • 2.2.4 Resolvent and Spectrum (39)
      • 2.2.5 Adjoint and Fredholm Operators (41)
    • 2.3 The Point Spectrum: Sturm–Liouville Theory (44)
      • 2.3.1 Sturm–Liouville Operators on a Bounded Domain (44)
      • 2.3.2 Sturm–Liouville Operators on the Real Line (47)
      • 2.3.3 Examples (47)
        • 2.3.3.1 A Bistable Reaction–Diffusion Equation: Pulse (47)
        • 2.3.3.2 A Bistable Reaction–Diffusion Equation: Traveling Front (49)
    • 2.4 Additional Reading (51)
  • 3 Essential and Absolute Spectra (52)
    • 3.1 The Essential Spectrum: Fronts and Pulses (52)
      • 3.1.1 Examples (65)
        • 3.1.1.1 The Generalized Korteweg–de Vries Equation (65)
        • 3.1.1.2 Exponentially Weighted Spaces (66)
        • 3.1.1.3 A Bistable Reaction–Diffusion Equation: Pulse (68)
        • 3.1.1.4 A Bistable Reaction–Diffusion Equation: Front (68)
        • 3.1.1.5 The Nonlinear Schrödinger Equation (71)
    • 3.2 The Absolute Spectrum (73)
      • 3.2.1 Examples (77)
        • 3.2.1.1 The Generalized Korteweg–de Vries Equation (77)
        • 3.2.1.2 A Bistable Reaction–Diffusion Equation: Front (78)
      • 3.2.2 Absolute Spectrum and the Large Domain Limit (78)
    • 3.3 The Essential Spectrum: Periodic Coefficients (80)
      • 3.3.1 Example: Hill's Equation (83)
    • 3.4 Additional Reading (87)
  • 4 Asymptotic Stability of Waves in Dissipative Systems (88)
    • 4.1 Linear Dynamics (90)
    • 4.2 Systems with Symmetries (99)
    • 4.3 Nonlinear Dynamics (103)
    • 4.4 Example: Scalar Viscous Conservation Law (112)
    • 4.5 Example: Nonlinear Schrödinger-Type Equations (120)
    • 4.6 Additional Reading (127)
  • 5 Orbital Stability of Waves in Hamiltonian Systems (129)
    • 5.1 Finite-Dimensional Systems (130)
    • 5.2 Infinite-Dimensional Hamiltonian Systems withSymmetry (134)
      • 5.2.1 The Generalized Korteweg–de Vries Equation (135)
      • 5.2.2 General Orbital Stability Result (148)
    • 5.3 Eigenvalues of Constrained Self-Adjoint Operators (160)
    • 5.4 Additional Reading (168)
  • 6 Point Spectrum: Reduction to Finite-Rank EigenvalueProblems (170)
    • 6.1 Perturbation of an Algebraically Simple Eigenvalue (171)
      • 6.1.1 Example: Parametrically Forced Ginzburg–Landau Equation (173)
      • 6.1.2 Example: Spatially Periodic Waves of gKdV (176)
    • 6.2 Perturbation of a Geometrically Simple Eigenvalue (184)
  • 7 Point Spectrum: Linear Hamiltonian Systems (187)
    • 7.1 The Krein Signature and the Hamiltonian–Krein Index (189)
      • 7.1.1 A Finite-Dimensional Version of Theorem 7.1.5 (193)
      • 7.1.2 Krein Signature and Bifurcation (197)
      • 7.1.3 The Jones–Grillakis Instability Index (198)
    • 7.2 Symmetry-Breaking Perturbations (203)
      • 7.2.1 Hamiltonian Perturbation (203)
        • 7.2.1.1 Perturbations of KHam (205)
        • 7.2.1.2 Perturbations to the Kernel of JL (208)
        • 7.2.1.3 Example: Hamiltonian Perturbation of NLS (211)
      • 7.2.2 Non-Hamiltonian Perturbations (214)
        • 7.2.2.1 Example: Non-Hamiltonian Perturbation of NLS (218)
    • 7.3 Additional Reading (222)
  • 8 The Evans Function for Boundary-Value Problems (224)
    • 8.1 Sturm–Liouville Operators (224)
    • 8.2 Higher-Order Operators (234)
      • 8.2.1 Rigorous Multiplicity Proof: mg(0)=1* (241)
      • 8.2.2 Rigorous Multiplicity Proof: mg(0)2* (243)
    • 8.3 Second-Order Systems (246)
    • 8.4 The Evans Function for Periodic Problems (249)
      • 8.4.1 Application: Spectral Properties (252)
    • 8.5 Additional Reading (256)
  • 9 The Evans Function for Sturm–Liouville Operators on the Real Line (257)
    • 9.1 The Whole-Line Eigenvalue Problem (258)
    • 9.2 Spectral Projections and the Jost Solutions (261)
    • 9.3 The Evans Function (270)
      • 9.3.1 Example: Square-Well Potential (275)
      • 9.3.2 Example: Reflectionless Potential (277)
    • 9.4 Application: The Orientation Index (280)
    • 9.5 Application: Edge Bifurcations (284)
      • 9.5.1 The =0 Problem (286)
      • 9.5.2 Calculation of E(0,0) (288)
      • 9.5.3 Calculation of E(0,0) (292)
    • 9.6 Application: Eigenvalue Problems on Large Intervalswith Separated Boundary Conditions (299)
    • 9.7 Application: Eigenvalue Problems for Periodic Problems with Large Spatial Period (307)
    • 9.8 Additional Reading (311)
  • 10 The Evans Function for nth-Order Operators on the Real Line (313)
    • 10.1 The Jost Matrices (314)
    • 10.2 The Evans Function (322)
    • 10.3 Application: The Orientation Index (324)
      • 10.3.1 Example: Generalized Korteweg–de Vries Equation (326)
      • 10.3.2 Example: Parametrically Forced Ginzburg–Landau Equation (329)
    • 10.4 Application: Edge Bifurcations (334)
      • 10.4.1 Example: The Nonlinear Schrödinger Equation (336)
      • 10.4.2 Example: A Perturbed Manakov Equation (340)
    • 10.5 Eigenvalue Problems on Large Intervals: Separated Boundary Conditions (346)
    • 10.6 Eigenvalue Problems: Periodic Coefficients with a Large Spatial Period (349)
    • 10.7 Additional Reading (352)
  • References (353)
  • Index (366)
Loading...