برای استفاده از امکانات سیستم، گزینه جاوا اسکریپت در مرورگر شما باید فعال باشد
صفحه
از
0
Stars and stellar processes
Guidry, M. W.
اطلاعات کتابشناختی
Stars and stellar processes
Author :
Guidry, M. W.
Publisher :
Cambridge University Press,
Pub. Year :
2018
Subjects :
Stars -- Structure. Stars -- Evolution.
Call Number :
QB 808 .G85 2018
جستجو در محتوا
ترتيب
شماره صفحه
امتياز صفحه
فهرست مطالب
Cover page
(2)
Half Title page
(2)
Title page
(3)
Copyright page
(4)
Dedication
(5)
Brief Contents
(6)
Contents
(8)
Preface
(26)
Part I Stellar Structure
(30)
1 Some Properties of Stars
(31)
1.1 Luminosities and Magnitudes
(31)
1.1.1 Stellar Luminosities
(32)
1.1.2 Photon Luminosities
(33)
1.1.3 Apparent Magnitudes
(33)
1.1.4 The Parsec Distance Unit
(36)
1.1.5 Absolute Magnitudes
(38)
1.1.6 Bolometric Magnitudes
(38)
1.2 Stars as Blackbody Radiators
(39)
1.2.1 Radiation Laws
(39)
1.2.2 Effective Temperatures
(41)
1.2.3 Stellar Radii from Effective Temperatures
(43)
1.3 Color Indices
(44)
1.4 Masses and Physical Radii of Stars
(46)
1.5 Binary Star Systems
(47)
1.5.1 Motion of Binary Systems
(48)
1.5.2 Radial Velocities and Masses
(50)
1.5.3 True Orbit for Visual Binaries
(53)
1.5.4 Eclipsing Binaries
(54)
1.6 Mass–Luminosity Relationships
(56)
1.7 Summary of Physical Quantities for Stars
(58)
1.8 Proper Motion and Space Velocities
(58)
1.9 Stellar Populations
(60)
1.9.1 Population I and Population II
(60)
1.9.2 Population III
(61)
1.10 Variable Stars and Period–Luminosity Relations
(62)
1.10.1 Cepheid Variables
(62)
1.10.2 RR Lyra Variables
(64)
1.10.3 Pulsational Instabilities
(64)
1.10.4 Pulsations and Free-Fall Timescales
(66)
Background and Further Reading
(67)
Problems
(67)
2 The Hertzsprung–Russell Diagram
(72)
2.1 Spectral Classes
(72)
2.1.1 Excitation and the Boltzmann Formula
(73)
2.1.2 Ionization and the Saha Equations
(73)
2.1.3 Ionization of Hydrogen and Helium
(76)
2.1.4 Optimal Temperatures for Spectral Lines
(78)
2.1.5 The Spectral Sequence
(80)
2.2 HR Diagram for Stars Near the Sun
(83)
2.2.1 Solving the Distance Problem
(84)
2.2.2 Features of the HR Diagram
(86)
2.3 HR Diagram for Clusters
(86)
2.4 Luminosity Classes
(89)
2.4.1 Pressure Broadening of Spectral Lines
(93)
2.4.2 Inferring Luminosity Class from Surface Density
(94)
2.5 Spectroscopic Parallax
(94)
2.6 The HR Diagram and Stellar Evolution
(95)
Background and Further Reading
(96)
Problems
(96)
3 Stellar Equations of State
(103)
3.1 Equations of State
(104)
3.2 The Pressure Integral
(104)
3.3 Ideal Gas Equation of State
(105)
3.3.1 Internal Energy
(107)
3.3.2 The Adiabatic Index
(109)
3.4 Mean Molecular Weights
(110)
3.4.1 Concentration Variables
(111)
3.4.2 Partially Ionized Gases
(111)
3.4.3 Fully-Ionized Gases
(113)
3.4.4 Shorthand Notation and Approximations
(114)
3.5 Polytropic Equations of State
(117)
3.5.1 Polytropic Processes
(117)
3.5.2 Properties of Polytropes
(118)
3.6 Adiabatic Equations of State
(120)
3.7 Equations of State for Degenerate Gases
(121)
3.7.1 Pressure Ionization
(123)
3.7.2 Distinguishing Classical and Quantum Gases
(126)
3.7.3 Nonrelativistic Classical and Quantum Gases
(128)
3.7.4 Ultrarelativistic Classical and Quantum Gases
(131)
3.7.5 Transition from a Classical to Quantum Gas
(132)
3.8 The Degenerate Electron Gas
(133)
3.8.1 Fermi Momentum and Fermi Energy
(133)
3.8.2 Equation of State for Nonrelativistic Electrons
(135)
3.8.3 Equation of State for Ultrarelativistic Electrons
(137)
3.9 High Gas Density and Stellar Structure
(138)
3.10 Equation of State for Radiation
(140)
3.11 Matter and Radiation Mixtures
(141)
3.11.1 Mixtures of Ideal Gases and Radiation
(141)
3.11.2 Adiabatic Systems of Gas and Radiation
(142)
3.11.3 Radiation and Gravitational Stability
(144)
Background and Further Reading
(144)
Problems
(144)
4 Hydrostatic and Thermal Equilibrium
(153)
4.1 Newtonian Gravitation
(153)
4.2 Conditions for Hydrostatic Equilibrium
(154)
4.3 Lagrangian and Eulerian Descriptions
(156)
4.3.1 Lagrangian Formulation of Hydrostatics
(156)
4.3.2 Contrasting Lagrangian and Eulerian Descriptions
(159)
4.4 Dynamical Timescales
(160)
4.5 The Virial Theorem for an Ideal Gas
(161)
4.6 Thermal Equilibrium
(164)
4.7 Total Energy for a Star
(166)
4.8 Stability and Heat Capacity
(167)
4.8.1 Temperature Response to Energy Fluctuations
(167)
4.8.2 Heating Up while Cooling Down
(169)
4.9 The Kelvin–Helmholtz Timescale
(170)
Background and Further Reading
(174)
Problems
(175)
5 Thermonuclear Reactions in Stars
(181)
5.1 Nuclear Energy Sources
(181)
5.1.1 The Curve of Binding Energy
(182)
5.1.2 Masses and Mass Excesses
(184)
5.1.3 Q-Values
(185)
5.1.4 Efficiency of Hydrogen Burning
(186)
5.2 Thermonuclear Hydrogen Burning
(187)
5.2.1 The Proton–Proton Chains
(188)
5.2.2 The CNO Cycle
(189)
5.2.3 Competition of PP Chains and the CNO Cycle
(191)
5.3 Cross Sections and Reaction Rates
(193)
5.3.1 Reaction Cross Sections
(194)
5.3.2 Rates from Cross Sections
(194)
5.4 Thermally Averaged Reaction Rates
(195)
5.5 Parameterization of Cross Sections
(196)
5.6 Nonresonant Cross Sections
(197)
5.6.1 Coulomb Barriers
(198)
5.6.2 Barrier Penetration Factors
(199)
5.6.3 Astrophysical S-Factors
(200)
5.6.4 The Gamow Window
(201)
5.7 Resonant Cross Sections
(204)
5.8 Calculations with Rate Libraries
(206)
5.9 Total Rate of Energy Production
(206)
5.10 Temperature and Density Exponents
(207)
5.11 Neutron Reactions and Weak Interactions
(208)
5.12 Reaction Selection Rules
(211)
5.12.1 Angular Momentum Conservation
(212)
5.12.2 Isotopic Spin Conservation
(212)
5.12.3 Parity Conservation
(212)
Background and Further Reading
(213)
Problems
(214)
6 Stellar Burning Processes
(218)
6.1 Reactions of the Proton–Proton Chains
(218)
6.1.1 Reactions of PP-I
(220)
6.1.2 Branching for PP-II and PP-III
(221)
6.1.3 Effective Q-Values
(222)
6.2 Reactions of the CNO Cycle
(223)
6.2.1 The CNO Cycle in Operation
(225)
6.2.2 Rate of CNO Energy Production
(227)
6.3 The Triple-α Process
(227)
6.3.1 Equilibrium Population of 8Be
(229)
6.3.2 Formation of the Excited State in 12C
(231)
6.3.3 Formation of the Ground State in 12C
(232)
6.3.4 Energy Production in the Triple-α Reaction
(233)
6.4 Helium Burning to C, O, and Ne
(234)
6.4.1 Oxygen and Neon Production
(235)
6.4.2 The Outcome of Helium Burning
(237)
6.5 Advanced Burning Stages
(239)
6.5.1 Carbon, Oxygen, and Neon Burning
(240)
6.5.2 Silicon Burning
(241)
6.6 Timescales for Advanced Burning
(245)
Background and Further Reading
(246)
Problems
(247)
7 Energy Transport in Stars
(250)
7.1 Modes of Energy Transport
(250)
7.2 Diffusion of Energy
(251)
7.3 Energy Transport by Conduction
(254)
7.4 Radiative Energy Transport
(255)
7.4.1 Thomson Scattering
(256)
7.4.2 Conduction in Degenerate Matter
(257)
7.4.3 Absorption of Photons
(257)
7.4.4 Stellar Opacities
(259)
7.4.5 General Contributions to Stellar Opacity
(260)
7.5 Energy Transport by Convection
(263)
7.6 Conditions for Convective Instability
(264)
7.6.1 The Schwarzschild Instability
(265)
7.6.2 The Ledoux Instability
(266)
7.6.3 Salt-Finger Instability
(267)
7.7 Critical Temperature Gradient for Convection
(269)
7.7.1 Convection and the Adiabatic Index
(271)
7.7.2 Convection and the Pressure Gradient
(272)
7.8 Stellar Temperature Gradients
(273)
7.8.1 Choice between Radiative or Convective Transport
(273)
7.8.2 Radiative Temperature Gradients
(274)
7.9 Mixing-Length Treatment of Convection
(275)
7.9.1 Pressure Scale Height
(276)
7.9.2 The Mixing-Length Philosophy
(277)
7.9.3 Analysis of Solar Convection
(278)
7.10 Examples of Stellar Convective Regions
(280)
7.10.1 Convection in Stellar Cores
(282)
7.10.2 Surface Ionization Zones
(283)
7.11 Energy Transport by Neutrino Emission
(284)
7.11.1 Neutrino Production Mechanisms
(285)
7.11.2 Classification and Rates
(290)
7.11.3 Coherent Neutrino Scattering
(294)
Background and Further Reading
(294)
Problems
(295)
8 Summary of Stellar Equations
(300)
8.1 The Basic Equations Governing Stars
(300)
8.1.1 Hydrostatic Equilibrium
(300)
8.1.2 Luminosity
(301)
8.1.3 Temperature Gradient
(301)
8.1.4 Changes in Isotopic Composition
(302)
8.1.5 Equation of State
(302)
8.2 Solution of the Stellar Equations
(303)
8.3 Important Stellar Timescales
(304)
8.4 Hydrostatic Equilibrium for Polytropes
(306)
8.4.1 Lane–Emden Equation and Solutions
(306)
8.4.2 Computing Physical Quantities
(310)
8.4.3 Limitations of the Lane–Emden Approximation
(311)
8.5 Numerical Solution of the Stellar Equations
(311)
Background and Further Reading
(312)
Problems
(312)
Part II Stellar Evolution
(315)
9 The Formation of Stars
(316)
9.1 Evidence for Starbirth in Nebulae
(316)
9.2 Jeans Criterion for Gravitational Collapse
(319)
9.3 Fragmentation of Collapsing Clouds
(321)
9.4 Stability in Adiabatic Approximation
(322)
9.4.1 Dependence on Adiabatic Exponents
(323)
9.4.2 Physical Interpretation
(324)
9.5 The Collapse of a Protostar
(325)
9.5.1 Initial Free-Fall Collapse
(325)
9.5.2 A Little More Realism
(326)
9.6 Onset of Hydrostatic Equilibrium
(327)
9.7 Termination of Fragmentation
(330)
9.8 Hayashi Tracks
(331)
9.8.1 Fully Convective Stars
(332)
9.8.2 Development of a Radiative Core
(333)
9.8.3 Dependence on Composition and Mass
(333)
9.9 Limiting Lower Mass for Stars
(334)
9.10 Brown Dwarfs
(335)
9.10.1 Spectroscopic Signatures
(336)
9.10.2 Stars, Brown Dwarfs, and Planets
(337)
9.11 Limiting Upper Mass for Stars
(338)
9.11.1 Eddington Luminosity
(338)
9.11.2 Estimate of Upper Limiting Mass
(339)
9.12 The Initial Mass Function
(341)
9.13 Protoplanetary Disks
(343)
9.14 Exoplanets
(345)
9.14.1 The Doppler Spectroscopy Method
(346)
9.14.2 Transits of Extrasolar Planets
(347)
Background and Further Reading
(347)
Problems
(347)
10 Life and Times on the Main Sequence
(354)
10.1 The Standard Solar Model
(354)
10.1.1 Composition of the Sun
(355)
10.1.2 Energy Generation and Composition Changes
(356)
10.1.3 Hydrostatic Equilibrium
(356)
10.1.4 Energy Transport
(356)
10.1.5 Constraints and Solution
(358)
10.2 Helioseismology
(364)
10.2.1 Solar p-Modes and g-Modes
(364)
10.2.2 Surface Vibrations and the Solar Interior
(365)
10.3 Solar Neutrino Production
(365)
10.3.1 Sources of Solar Neutrinos
(366)
10.3.2 Testing the Standard Solar Model with Neutrinos
(367)
10.4 The Solar Electron-Neutrino Deficit
(367)
10.4.1 The Davis Chlorine Experiment
(368)
10.4.2 The Gallium Experiments
(369)
10.4.3 Super Kamiokande
(369)
10.4.4 Astrophysics and Particle Physics Explanations
(371)
10.5 Evolution of Stars on the Main Sequence
(373)
10.6 Timescale for Main Sequence Lifetimes
(375)
10.7 Evolutionary Timescales
(377)
10.8 Evolution Away from the Main Sequence
(378)
10.8.1 Three Categories of Post Main Sequence Evolution
(380)
10.8.2 Examples of Post Main Sequence Evolution
(381)
Background and Further Reading
(384)
Problems
(384)
11 Neutrino Flavor Oscillations
(389)
11.1 Overview of the Solar Neutrino Problem
(389)
11.2 Weak Interactions and Neutrino Physics
(390)
11.2.1 Matter and Force Fields of the Standard Model
(392)
11.2.2 Masses for Particles of the Standard Model
(393)
11.2.3 Charged and Neutral Currents
(395)
11.3 Flavor Mixing
(397)
11.3.1 Flavor Mixing in the Quark Sector
(397)
11.3.2 Flavor Mixing in the Leptonic Sector
(398)
11.4 Implications of a Finite Neutrino Mass
(399)
11.5 Neutrino Vacuum Oscillations
(399)
11.5.1 Mixing for Two Neutrino Flavors
(400)
11.5.2 The Vacuum Oscillation Length
(401)
11.5.3 Time-Averaged or Classical Probabilities
(403)
11.6 Neutrino Oscillations with Three Flavors
(405)
11.6.1 CP Violation in Neutrino Oscillations
(406)
11.6.2 The Neutrino Mass Hierarchy
(408)
11.6.3 Recovering 2-Flavor Mixing
(409)
11.7 Neutrino Masses and Particle Physics
(410)
Background and Further Reading
(410)
Problems
(410)
12 Solar Neutrinos and the MSW Effect
(415)
12.1 Propagation of Neutrinos in Matter
(415)
12.1.1 Matrix Elements for Interaction with Matter
(416)
12.1.2 The Effective Neutrino Mass in Medium
(417)
12.2 The Mass Matrix
(419)
12.2.1 Propagation of Left-Handed Neutrinos
(419)
12.2.2 Evolution in the Flavor Basis
(420)
12.2.3 Propagation in Matter
(422)
12.3 Solutions in Matter
(423)
12.3.1 Mass Eigenvalues for Constant Density
(424)
12.3.2 The Matter Mixing Angle θm
(424)
12.3.3 The Matter Oscillation Length Lm
(425)
12.3.4 Flavor Conversion in Constant-Density Matter
(426)
12.4 The MSW Resonance Condition
(427)
12.5 Resonant Flavor Conversion
(431)
12.6 Propagation in Matter of Varying Density
(434)
12.7 The Adiabatic Criterion
(436)
12.8 MSW Neutrino Flavor Conversion
(437)
12.8.1 Flavor Conversion in Adiabatic Approximation
(437)
12.8.2 Adiabatic Conversion and the Mixing Angle
(439)
12.8.3 Resonant Conversion for Large or Small θ
(440)
12.8.4 Energy Dependence of Flavor Conversion
(440)
12.9 Resolution of the Solar Neutrino Problem
(441)
12.9.1 Super-K Observation of Flavor Oscillation
(441)
12.9.2 SNO Observation of Neutral Current Interactions
(442)
12.9.3 KamLAND Constraints on Mixing Angles
(445)
12.9.4 Large Mixing Angles and the MSW Mechanism
(446)
12.9.5 A Tale of Large and Small Mixing Angles
(446)
Background and Further Reading
(447)
Problems
(447)
13 Evolution of Lower-Mass Stars
(451)
13.1 Endpoints of Stellar Evolution
(451)
13.2 Shell Burning
(452)
13.3 Stages of Red Giant Evolution
(455)
13.4 The Red Giant Branch
(459)
13.4.1 The Schönberg–Chandrasekhar Limit
(459)
13.4.2 Crossing the Hertzsprung Gap
(460)
13.5 Helium Ignition
(461)
13.5.1 Core Equation of State and Helium Ignition
(461)
13.5.2 Thermonuclear Runaways in Degenerate Matter
(462)
13.5.3 The Helium Flash
(462)
13.6 Horizontal Branch Evolution
(463)
13.6.1 Life on the Helium Main Sequence
(463)
13.6.2 Leaving the Horizontal Branch
(464)
13.7 Asymptotic Giant Branch Evolution
(465)
13.7.1 Thermal Pulses
(466)
13.7.2 Slow Neutron Capture
(472)
13.7.3 Development of Deep Convective Envelopes
(476)
13.7.4 Mass Loss
(477)
13.8 Ejection of the Envelope
(478)
13.9 White Dwarfs and Planetary Nebulae
(478)
13.10 Stellar Dredging Operations
(480)
13.11 The Sun’s Red Giant Evolution
(482)
13.12 Overview for Low-Mass Stars
(484)
Background and Further Reading
(485)
Problems
(485)
14 Evolution of Higher-Mass Stars
(490)
14.1 Unique Features of More Massive Stars
(490)
14.2 Advanced Burning Stages in Massive Stars
(491)
14.3 Envelope Loss from Massive Stars
(493)
14.3.1 Wolf–Rayet Stars
(493)
14.3.2 The Strange Case of η Carinae
(496)
14.4 Neutrino Cooling of Massive Stars
(496)
14.4.1 Local and Nonlocal Cooling
(497)
14.4.2 Neutrino Cooling and the Pace of Stellar Evolution
(497)
14.5 Massive Population III Stars
(498)
14.6 Evolutionary Endpoints for Massive Stars
(499)
14.6.1 Observational and Theoretical Characteristics
(500)
14.6.2 Black Holes from Failed Supernovae?
(500)
14.6.3 Gravitational Waves and Stellar Evolution
(502)
14.7 Summary: Evolution after the Main Sequence
(503)
14.8 Stellar Lifecycles
(504)
Background and Further Reading
(505)
Problems
(506)
15 Stellar Pulsations and Variability
(509)
15.1 The Instability Strip
(509)
15.2 Adiabatic Radial Pulsations
(511)
15.3 Pulsating Variables as Heat Engines
(513)
15.4 Non-adiabatic Radial Pulsations
(514)
15.4.1 Thermodynamics of Sustained Pulsation
(514)
15.4.2 Opacity and the κ-Mechanism
(516)
15.4.3 Partial Ionization Zones and the Instability Strip
(517)
15.4.4 The ε-Mechanism and Massive Stars
(519)
15.5 Non-radial Pulsation
(520)
Background and Further Reading
(520)
Problems
(521)
16 White Dwarfs and Neutron Stars
(522)
16.1 Properties of White Dwarfs
(522)
16.1.1 Density and Gravity
(523)
16.1.2 Equation of State
(523)
16.1.3 Ingredients of a White Dwarf Description
(525)
16.2 Polytropic Models of White Dwarfs
(526)
16.2.1 Low-Mass White Dwarfs
(527)
16.2.2 High-Mass White Dwarfs
(527)
16.2.3 Heuristic Derivation of the Chandrasekhar Limit
(531)
16.2.4 Effective Adiabatic Index and Gravitational Stability
(533)
16.3 Internal Structure of White Dwarfs
(535)
16.3.1 Temperature Variation
(536)
16.3.2 An Insulating Blanket around a Metal Ball
(537)
16.4 Cooling of White Dwarfs
(538)
16.5 Crystallization of White Dwarfs
(539)
16.6 Beyond White Dwarf Masses
(541)
16.7 Basic Properties of Neutron Stars
(541)
16.7.1 Sizes and Masses
(542)
16.7.2 Internal Structure
(544)
16.7.3 Cooling of Neutron Stars
(546)
16.7.4 Evidence for Superfluidity in Neutron Stars
(548)
16.8 Hydrostatic Equilibrium in General Relativity
(551)
16.8.1 The Oppenheimer–Volkov Equations
(551)
16.8.2 Comparison with Newtonian Gravity
(552)
16.9 Pulsars
(553)
16.9.1 The Pulsar Mechanism
(553)
16.9.2 Pulsar Magnetic Fields
(555)
16.9.3 The Crab Pulsar
(556)
16.9.4 Pulsar Spindown and Glitches
(557)
16.9.5 Millisecond Pulsars
(557)
16.9.6 Binary Pulsars
(561)
16.10 Magnetars
(562)
Background and Further Reading
(563)
Problems
(563)
17 Black Holes
(568)
17.1 The Failure of Newtonian Gravity
(568)
17.2 The General Theory of Relativity
(569)
17.2.1 General Covariance
(569)
17.2.2 The Principle of Equivalence
(570)
17.2.3 Curved Spacetime and Tensors
(571)
17.2.4 Curvature and the Strength of Gravity
(571)
17.3 Some Important General Relativistic Solutions
(572)
17.3.1 The Einstein Equation
(573)
17.3.2 Line Elements and Metrics
(574)
17.3.3 Minkowski Spacetime
(574)
17.3.4 Schwarzschild Spacetime
(576)
17.3.5 Kerr Spacetime
(577)
17.4 Evidence for Black Holes
(579)
17.4.1 Compact Objects in X-ray Binaries
(580)
17.4.2 Causality Constraints
(583)
17.4.3 The Black Hole Candidate Cygnus X-1
(584)
17.5 Black Holes and Gravitational Waves
(587)
17.6 Supermassive Black Holes
(588)
17.7 Intermediate-Mass and Mini Black Holes
(589)
17.8 Proof of the Pudding: Event Horizons
(590)
17.9 Some Measured Black Hole Masses
(593)
Background and Further Reading
(593)
Problems
(594)
Part III Accretion, Mergers, and Explosions
(596)
18 Accreting Binary Systems
(597)
18.1 Classes of Accretion
(597)
18.2 Roche-lobe Overflow
(598)
18.2.1 The Roche Potential
(598)
18.2.2 Lagrange Points
(599)
18.2.3 Roche Lobes
(601)
18.3 Classification of Binary Star Systems
(602)
18.4 Accretion Streams and Accretion Disks
(603)
18.4.1 Gas Motion
(603)
18.4.2 Initial Accretion Velocity
(604)
18.4.3 General Properties of Roche-Overflow Accretion
(606)
18.4.4 Disk Dynamics
(607)
18.5 Wind-Driven Accretion
(609)
18.6 Classification of X-Ray Binaries
(610)
18.6.1 High-Mass X-Ray Binaries
(611)
18.6.2 Low-Mass X-Ray Binaries
(611)
18.6.3 Suppression of Accretion for Intermediate Masses
(612)
18.7 Accretion Power
(612)
18.7.1 Maximum Energy Release in Accretion
(613)
18.7.2 Limits on Accretion Rates
(614)
18.7.3 Accretion Temperatures
(614)
18.7.4 Maximum Efficiency for Energy Extraction
(615)
18.7.5 Storing Energy in Accretion Disks
(616)
18.8 Some Accretion-Induced Phenomena
(617)
18.9 Accretion and Stellar Evolution
(618)
18.9.1 The Algol Paradox
(618)
18.9.2 Blue Stragglers
(620)
Background and Further Reading
(620)
Problems
(620)
19 Nova Explosions and X-Ray Bursts
(625)
19.1 The Nova Mechanism
(625)
19.1.1 The Hot CNO Cycle
(629)
19.1.2 Recurrence of Novae
(630)
19.1.3 Nucleosynthesis in Novae
(631)
19.2 The X-Ray Burst Mechanism
(631)
19.2.1 Rapid Proton Capture
(632)
19.2.2 Nucleosynthesis and the rp-Process
(633)
Background and Further Reading
(634)
Problems
(634)
20 Supernovae
(636)
20.1 Classification of Supernovae
(636)
20.1.1 Type Ia
(640)
20.1.2 Type Ib and Type Ic
(641)
20.1.3 Type II
(642)
20.2 Thermonuclear Supernovae
(643)
20.2.1 The Single-Degenerate Mechanism
(645)
20.2.2 The Double-Degenerate Mechanism
(647)
20.2.3 Thermonuclear Burning in Extreme Conditions
(647)
20.2.4 Element and Energy Production
(649)
20.2.5 Late-Time Observables
(651)
20.3 Core Collapse Supernovae
(652)
20.3.1 The “Supernova Problem”
(653)
20.3.2 The Death of Massive Stars
(654)
20.3.3 Sequence of Events in Core Collapse
(655)
20.3.4 Neutrino Reheating
(660)
20.3.5 Convection and Neutrino Reheating
(663)
20.3.6 Convectively Unstable Regions in Supernovae
(663)
20.3.7 Remnants of Core Collapse
(665)
20.4 Supernova 1987A
(666)
20.4.1 The Neutrino Burst
(666)
20.4.2 The Progenitor was Blue!
(668)
20.4.3 Radioactive Decay and the Lightcurve
(670)
20.4.4 Evolution of the Supernova Remnant
(671)
20.4.5 Where is the Neutron Star?
(673)
20.5 Heavy Elements and the r-Process
(674)
Background and Further Reading
(677)
Problems
(677)
21 Gamma-Ray Bursts
(681)
21.1 The Sky in Gamma-Rays
(681)
21.2 Localization of Gamma-Ray Bursts
(685)
21.3 Generic Characteristics of Gamma-Ray Burst
(687)
21.4 The Importance of Ultrarelativistic Jets
(690)
21.4.1 Optical Depth for a Nonrelativistic Burst
(691)
21.4.2 Optical Depth for an Ultrarelativistic Burst
(691)
21.4.3 Confirmation of Large Lorentz Factors
(692)
21.5 Association of GRBs with Galaxies
(693)
21.6 Mechanisms for the Central Engine
(693)
21.7 Long-Period GRB and Supernovae
(695)
21.7.1 Types Ib and Ic Supernovae
(695)
21.7.2 Role of Metallicity
(696)
21.8 Collapsar Model of Long-Period Bursts
(696)
21.9 Neutron Star Mergers and Short-Period Bursts
(700)
21.10 Multimessenger Astronomy
(702)
Background and Further Reading
(703)
Problems
(703)
22 Gravitational Waves and Stellar Evolution
(705)
22.1 Gravitational Waves
(705)
22.2 Sample Gravitational Waveforms
(708)
22.3 The Gravitational Wave Event GW150914
(710)
22.3.1 Observed Waveforms
(711)
22.3.2 The Black Hole Merger
(712)
22.4 A New Probe of Massive-Star Evolution
(715)
22.4.1 Formation of Massive Black Hole Binaries
(715)
22.4.2 Gravitational Waves and Massive Binary Evolution
(717)
22.4.3 Formation of Supermassive Black Holes
(720)
22.5 Listening to Multiple Messengers
(722)
22.6 Gravitational Waves from Neutron Star Mergers
(722)
22.6.1 New Insights Associated with GW170817
(725)
22.6.2 The Kilonova Associated with GW170817
(728)
22.7 Gravitational Wave Sources and Detectors
(730)
Background and Further Reading
(731)
Problems
(731)
Appendix A Constants
(733)
Appendix B Natural Units
(737)
Appendix C Mean Molecular Weights
(742)
Appendix D Reaction Libraries
(744)
Appendix E A Mixing-Length Model
(757)
Appendix F Quantum Mechanics
(762)
Appendix G Using arXiv and ADS
(766)
References
(768)
Index
(778)