برای استفاده از امکانات سیستم، گزینه جاوا اسکریپت در مرورگر شما باید فعال باشد
صفحه
از
0
Advanced Bioceramics : Properties, Processing, and Applications
اطلاعات کتابشناختی
Advanced Bioceramics : Properties, Processing, and Applications
Author :
Publisher :
CRC Press,
Pub. Year :
2024
Subjects :
Biomedical engineering. Biomedical materials. Bone regeneration.
Call Number :
R 857 .M3 .A39 2024
جستجو در محتوا
ترتيب
شماره صفحه
امتياز صفحه
فهرست مطالب
Cover
(1)
Half Title
(2)
Title Page
(4)
Copyright Page
(5)
Table of Contents
(6)
Preface
(16)
Editors
(19)
List of Contributors
(21)
Section A Introduction and Processing
(26)
Chapter 1 Overview of Bioceramics
(28)
1.1 Introduction
(28)
1.2 Historical Background
(30)
1.3 Biomaterials
(33)
1.4 Biomaterials in Comparison with Other Materials
(33)
1.5 Brief Classification of Biomaterials
(34)
1.5.1 Bioceramics
(34)
1.6 Composition of Bioceramics
(35)
1.7 Properties of Bioceramics
(36)
1.7.1 Porosity
(37)
1.7.2 Mechanical Properties of Bioceramics
(37)
1.7.3 Possible Transparency
(38)
1.8 Types of Bioceramics
(39)
1.8.1 Bioceramics Based on Tissue Interactions
(39)
1.8.2 Bioceramics in Nanotechnology
(45)
1.9 Applications of Bioceramics
(47)
1.9.1 Tissue Engineering and Orthopedic Usage
(48)
1.9.2 Cancer Treatment
(53)
1.9.3 Coatings
(54)
1.9.4 Dentistry
(55)
1.9.5 Ocular Implant
(58)
1.9.6 Otolaryngologic Applications
(59)
1.10 Conclusions and Prospects
(59)
Acknowledgments
(60)
References
(60)
Chapter 2 Processing of Bioceramics by Extrusion and Slip Casting
(71)
2.1 Introduction
(71)
2.2 Fabrication of Bioceramics
(72)
2.2.1 Powder Processing
(72)
2.2.2 Shaping or Forming of Green Body
(74)
2.2.3 Drying and Removal of the Binder
(76)
2.2.4 Sintering
(78)
2.3 Green Body Formation by Extrusion
(78)
2.4 Green Body Formation by Slip Casting
(83)
2.5 Conclusions
(91)
Acknowledgments
(92)
References
(92)
Chapter 3 Processing of Bioceramics by Pressing and Tape Casting
(99)
3.1 Background
(99)
3.2 Powder Treatment
(100)
3.3 Pressing
(101)
3.3.1 Uniaxial Pressing or Die Pressing
(101)
3.3.2 Isostatic Pressing
(104)
3.4 Tape Casting
(106)
3.4.1 Doctor Blade Tape Casting Process
(106)
3.4.2 Further Tape Processing
(112)
3.4.3 Tape Casting Applications
(114)
3.5 Conclusion and Future Directions
(114)
References
(114)
Chapter 4 Processing of Bioceramics by Additive Manufacturing
(119)
4.1 Introduction
(119)
4.2 Materials for 3D Printing of Bioceramics
(122)
4.2.1 Chemical Composition of the Bone
(122)
4.2.2 Bioinert Ceramics
(123)
4.2.3 Bioactive Ceramics
(124)
4.2.4 Biodegradable Ceramics
(126)
4.3 Important Characteristics of Bioceramic Scaffolds
(128)
4.3.1 Porosity
(128)
4.3.2 Mechanical Properties
(128)
4.3.3 Biodegradability
(128)
4.3.4 Biocompatibility
(129)
4.4 3D-Printing Techniques of Bioceramics Scaffolds
(129)
4.4.1 Selective Laser Sintering (SLS)
(130)
4.4.2 Robocasting/Direct Ink Writing (DIW)
(130)
4.4.3 Stereolithography (SLA)
(131)
4.4.4 Binder Jetting (BJ)
(132)
4.4.5 Digital Light Processing (DLP)
(133)
4.4.6 Fused Deposition Modeling (FDM)
(134)
4.4.7 Laminated Object Manufacturing (LOM)
(135)
4.4.8 Material Jetting (MJ)
(136)
4.4.9 Selective Laser Melting (SLM)
(138)
4.5 Current Research on 3D Printing of Bioceramics
(139)
4.6 Applications of 3D-Printed Bioceramics
(142)
4.7 Current Challenges and Future Research Directions
(144)
4.8 Summary
(147)
References
(148)
Section B Properties and Processing
(154)
Chapter 5 Structural, Chemical, Electrical, Thermal, and Mechanical Properties of Bioceramics
(156)
5.1 Introduction
(156)
5.2 Properties of Bioceramics
(157)
5.3 Structural Properties
(158)
5.3.1 Atomic Bond, Structure, and Arrangement
(158)
5.3.2 Structural Symptoms of Hydroxyapatite [Ca10 (PO 4)6 (OH)2]
(160)
5.4 Chemical Properties of Bioceramics
(162)
5.4.1 Inert Ceramic Materials: Oxide Bioceramics
(162)
5.5 Electrical Properties of Bioceramics
(164)
5.5.1 Electroactivity of Ag-Hap Nano-Bioceramics Materials
(165)
5.5.2 Electrical Impedance Measurement of Hydroxyapatite
(168)
5.6 Thermal Properties of Bioceramics
(169)
5.6.1 Thermal Properties of Bioactive (SiO2 –CaO–Na2O–P2O5) Glasses
(170)
5.6.2 Thermal Conductivity of Ion-Substituted Hydroxyapatite Bioceramics
(172)
5.7 Mechanical Properties of Bioceramics
(175)
5.7.1 Criteria of Aluminia and Zirconia
(177)
5.7.2 Bioactive Glass-Ceramics Component
(178)
5.7.3 Mechanical Performance of Silicate Bioceramics
(180)
5.8 Conclusions and Future Directions
(183)
References
(184)
Chapter 6 Biocompatibility and Biodegradability of Bioceramics
(193)
6.1 Introduction
(193)
6.2 In Vitro Biocompatibility of Bioceramics
(195)
6.3 Biocompatibility Tests of Bioceramics
(197)
6.3.1 In Vitro Cytotoxicity Test of Bioceramics
(197)
6.4 Biodegradability of Bioceramics
(200)
6.4.1 Biodegradation of Calcium Phosphates
(200)
6.4.2 Biodegradation of Bioactive Glasses
(202)
6.5 Bioactivity of Bioceramics
(203)
6.6 Bioactivity versus Biodegradability of Bioceramics
(204)
6.7 Conclusion
(205)
References
(205)
Chapter 7 Modeling and Simulations on Medical Implementations of Bioceramics
(213)
7.1 Introduction
(213)
7.2 Nanobiointerface Interactions – MD Simulations
(214)
7.3 Dental Applications
(214)
7.4 Statistical Optimization in Bioceramics
(215)
7.5 Bone Grafting
(215)
7.6 Bioactive Glass and HAp
(215)
7.7 Density Functional Theory Calculations
(216)
7.8 Bioceramic Blends
(217)
7.9 3D Printing in Biomaterials
(217)
7.10 Mechanical Properties of Biomaterials
(218)
7.11 Summary
(219)
References
(220)
Section C Applications
(222)
Chapter 8 Bioceramics: From Concept to Clinic
(224)
8.1 Introduction
(224)
8.2 Bioceramics
(225)
8.2.1 Bio-Physico-Chemical Properties of Bioceramics
(226)
8.2.2 Bioinert Ceramics
(226)
8.2.3 Bioresorbable Ceramics
(226)
8.2.4 Hydroxyapatite (HAP)
(227)
8.3 Metal Composition Importance in Physiological Environment
(228)
8.3.1 Calcium
(228)
8.3.2 Silica
(228)
8.3.3 Magnesium
(228)
8.3.4 Zinc
(228)
8.3.5 Zirconium
(229)
8.4 Bioceramic Materials Aspect for Biomedical Applications
(229)
8.5 Silicate-Based Biomaterials
(230)
8.5.1 Calcium Magnesium Silicates (Ca-Mg-Si) and Aluminosilicate
(231)
8.5.2 Bioactive Ceramics
(232)
8.6 Recent Advancement in Bioceramics
(233)
8.7 Bioceramics Reaction in Physiological Environment
(235)
8.8 Clinical Applications of Bioceramics
(236)
8.8.1 Endodontic Sealing Materials
(236)
8.8.2 Dental Re-mineralization Application
(237)
8.8.3 Tissue Regenerative Application
(238)
8.8.4 Drug Delivery and Haemostat
(238)
8.9 Conclusion
(239)
References
(239)
Chapter 9 Bioceramics for Cosmetic Dentistry
(244)
9.1 Introduction
(244)
9.2 Classification of Ceramic Materials
(245)
9.2.1 According to Composition
(245)
9.2.2 According to Fabrication Process
(246)
9.2.3 Rosenblum and Sculman 1997: Ceramic Could Be Used to Fabricate Metal-Ceramic or All-Ceramic Prosthesis
(246)
9.2.4 According to Gracis and Thompson: Dental Ceramic and Ceramic-Like Materials
(246)
9.2.5 According to Hao Yu Shi et al. Ceramic in Field of Operative Dentistry Can Be Classified as Follows
(247)
9.3 Properties of Dental Ceramics
(247)
9.4 Fabrication Techniques
(247)
9.4.1 Copy Milling
(250)
9.4.2 PROCERA and CEREC
(250)
9.5 Tooth Preparation for Ceramic Restorations
(250)
9.5.1 Veneer
(250)
9.5.2 INLAY
(251)
9.6 Surface Treatment and Bonding
(252)
9.6.1 Mechanical Methods
(252)
9.6.2 Chemical Methods
(253)
9.6.3 Surface Treatment for Zirconia-Based Ceramics
(253)
9.7 Clinical Implications
(254)
9.7.1 Selection of Ceramic
(254)
9.7.2 Clinical Scenarios
(255)
9.8 Finishing and Polishing
(257)
9.9 Failures in Ceramic Restoration
(257)
9.10 Repair of Ceramic Restoration
(258)
9.11 Conclusions and Future Directions
(259)
Acknowledgement
(260)
References
(260)
Chapter 10 Bioceramics for Hip and Knee Implants
(264)
10.1 Introduction
(264)
10.2 Market Size
(265)
10.3 Bioceramic Components for Hip/Knee Joints
(265)
10.4 Classification of Bioceramics
(268)
10.5 Overview of Different Types of Bioceramics
(270)
10.5.1 Bioinert Ceramics
(270)
10.5.2 Bioresorbable Ceramics
(275)
10.5.3 Bioactive Ceramics
(276)
10.6 Importance of Biocompatibility of Implants
(279)
10.7 Biocompatibility Tests
(279)
10.8 Implant Failure Prevention
(280)
10.9 Conclusions and Future Prospects
(282)
References
(282)
Chapter 11 Bioceramics for Regenerative Medicine
(289)
11.1 Biomaterials
(289)
11.1.1 Ideal Biomaterial Should Be
(289)
11.1.2 Existing Biomaterials and Their Drawbacks
(289)
11.1.3 Bone Prosthetics
(290)
11.1.4 Bioceramics
(290)
11.1.5 Generations of Bioceramics
(291)
11.1.6 Methods of Bioceramic Preparation
(291)
11.1.7 Metal Oxide–Doped Bioceramics
(291)
11.1.8 Phosphate-Based Bioactive Glass Doped with Different Metal Oxides and Fluorides
(292)
11.1.9 Beneficial Effects of Metal Oxides (Ag2O, TiO2, and ZrO2)
(292)
11.1.10 Food and Drug Administration
(293)
11.2 Experimental Studies
(293)
11.2.1 Melt Quenching Technique
(293)
11.2.2 Physicochemical and Biological Characteristics of Bioceramics
(294)
11.3 Conclusions
(304)
Acknowledgements
(305)
Abbreviations
(306)
References
(306)
Chapter 12 Bioceramics for Drug Delivery
(310)
12.1 Introduction
(310)
12.2 Natural Ceramics in Human Body
(311)
12.3 Artificial Ceramics for Bone Replacement
(313)
12.4 Drug Delivery from Silica Mesoporous Nanoparticles
(316)
12.4.1 Stimuli-Responsive Drug Delivery
(319)
12.4.2 MSNs Loaded with Prodrugs
(323)
12.4.3 Selective Targeting for Drug Delivery
(324)
12.5 Conclusions and Future Directions
(326)
References
(326)
Section D Iso/Astm Specifications
(334)
Chapter 13 Standard Terminologies and Definitions in Bioceramics
(336)
13.1 Introduction
(336)
13.2 Common Terminologies and Definitions
(336)
13.2.1 Medical Implants
(337)
13.2.2 Alumina (Al2O3)
(338)
13.2.3 Zirconia (ZrO2)
(338)
13.2.4 HA or HAp
(339)
13.2.5 TCP, α-TCP, and β-TCP
(339)
13.2.6 Biphasic Calcium Phosphate (BCP)
(340)
13.2.7 Mineral Trioxide Aggregate (MTA)
(340)
13.2.8 BG
(340)
13.3 Bioceramic Standards
(340)
13.3.1 ASTM C1161-02
(341)
13.3.2 ASTM D0149-20
(342)
13.3.3 ASTM C0372-94R20
(342)
13.3.4 ASTM F2009-20
(342)
13.3.5 ASTM F2393-12R20
(343)
13.3.6 ASTM F1609-08R14
(343)
13.3.7 ASTM F1538-03R17
(343)
13.3.8 ASTM F1088-18
(343)
13.3.9 ASTM C1424-15R19
(344)
13.3.10 ASTM C1684-18
(345)
13.3.11 ASTM C1273-18
(345)
13.3.12 ASTM C1366-19
(346)
13.3.13 ASTM C1291-18
(346)
13.3.14 ASTM C1499-19
(346)
13.3.15 ASTM C1674-16
(347)
13.3.16 ASTM C1862-17
(347)
13.3.17 ASTM C1368-18
(347)
13.3.18 ASTM C1239-13R18
(348)
13.3.19 ASTM C1683-10R19
(348)
13.3.20 ASTM F603-12R20
(348)
13.3.21 ISO 6474-1:2019
(348)
13.3.22 ISO 7206-10:2018
(348)
13.3.23 ISO 13779-2:2018(en)
(348)
13.3.24 ISO/DIS 18531(en)
(349)
References
(349)
Chapter 14 Standards of Mechanical, Physical, Chemical, and Biological Properties of Bioceramics
(352)
14.1 Introduction
(352)
14.2 Mechanical Property
(353)
14.2.1 Bio-inert
(353)
14.2.2 Bioactive
(354)
14.2.3 Bioresorbable (Biodegradable)
(354)
14.3 Physical Properties
(356)
14.4 Chemical and Biochemical Properties
(357)
14.4.1 Silicon Base Ceramics
(357)
14.4.2 Zinc-Copper-Barium Base Ceramics
(357)
14.4.3 Area of Application
(357)
14.5 Biological Properties of Bioceramics
(360)
14.6 Conclusion
(362)
References
(363)
Chapter 15 Reuse, Reduce and Recycling Standards of Bioceramics
(369)
15.1 Introduction
(369)
15.2 Bioceramics Properties
(372)
15.3 Bioceramics as Nanobiomaterials
(374)
15.4 Reuse, Reduce and Recycling of Bioceramics
(374)
15.5 Conclusions
(378)
References
(379)
Section E Challenges, Issues and Sustainability
(382)
Chapter 16 Ethical Issues of Bioceramics
(384)
16.1 Introduction
(384)
16.2 Ethical Concerns with New Technologies
(385)
16.3 Biosafety and Biocompatibility
(386)
16.4 Ethics and Stem Cell Research
(386)
16.5 Ethics and Nano Biology
(387)
16.6 Tissue Engineering
(387)
16.7 Cost vs Benefit Analysis
(389)
16.8 Ethics and Authorship
(389)
16.9 Publication Ethics and Malpractice Statement
(394)
16.9.1 Editor’s Responsibilities
(394)
16.9.2 Confidentiality
(394)
16.9.3 Reviewers’ Responsibilities
(394)
16.9.4 Standards of Objectivity
(394)
16.10 Reporting Standards
(395)
16.11 Data Access and Retention
(395)
16.12 Conclusion
(395)
16.13 Future Perspectives
(397)
References
(399)
Chapter 17 Opportunities, Challenges and Future of Bioceramics
(401)
17.1 Introduction
(401)
17.2 Composites and Biocomposites
(403)
17.3 Classification of Various Bioceramics
(403)
17.4 Characterisation of Bone Biocomposites Using Bioceramics
(404)
17.4.1 Hydroxyapatite
(405)
17.4.2 Calcium Phosphate
(406)
17.4.3 Bioactive Glass
(408)
17.4.4 Tricalcium Phosphate
(409)
17.5 The Use of Bioceramics in 3D Bioprinting Technology
(409)
17.5.1 Chitosan
(411)
17.5.2 Hyaluronic Acid
(412)
17.6 Bioceramic Dental Cements
(413)
17.7 The Future Challenges and Opportunities for Bioceramics
(414)
17.7.1 New Opportunites Do Exist in the Field of Bioceramics
(414)
17.7.2 There Will Always Be Challenges
(414)
17.7.3 What Does the Future Hold for Bioceramics?
(415)
17.8 Conclusion
(416)
References
(420)
Index
(426)