کتابخانه مرکزی دانشگاه صنعتی شریف
    • [نمايش بزرگتر]
    • [نمايش کوچکتر]
  • صفحه 
     از  0
  • [صفحه قبل]
  • [صفحه بعد]
  • [نمایش تمام صفحه]
  • [بستن]
 
دستورالعمل کنترل کیفیت داده های مکانی حوضه دریاچه ارومیه

اطلاعات کتابشناختی

دستورالعمل کنترل کیفیت داده های مکانی حوضه دریاچه ارومیه
پدیدآور اصلی :  
ناشر :   دانشگاه صنعتی شریف،
سال انتشار  :   [بی تا]
موضوع ها :   دریاچه ارومیه. حوضه آبریز دریاچه ارومیه. اطلاعات مکانی. پایگاه اطلاعات مکانی. کیفیت...
شماره راهنما :  

جستجو در محتوا

ترتيب

فهرست مطالب

  • Cover (1)
  • Half Title (2)
  • Title Page (4)
  • Copyright Page (5)
  • Table of Contents (6)
  • Preface (16)
  • Editors (19)
  • List of Contributors (21)
  • Section A Introduction and Processing (26)
    • Chapter 1 Overview of Bioceramics (28)
      • 1.1 Introduction (28)
      • 1.2 Historical Background (30)
      • 1.3 Biomaterials (33)
      • 1.4 Biomaterials in Comparison with Other Materials (33)
      • 1.5 Brief Classification of Biomaterials (34)
        • 1.5.1 Bioceramics (34)
      • 1.6 Composition of Bioceramics (35)
      • 1.7 Properties of Bioceramics (36)
        • 1.7.1 Porosity (37)
        • 1.7.2 Mechanical Properties of Bioceramics (37)
        • 1.7.3 Possible Transparency (38)
      • 1.8 Types of Bioceramics (39)
        • 1.8.1 Bioceramics Based on Tissue Interactions (39)
        • 1.8.2 Bioceramics in Nanotechnology (45)
      • 1.9 Applications of Bioceramics (47)
        • 1.9.1 Tissue Engineering and Orthopedic Usage (48)
        • 1.9.2 Cancer Treatment (53)
        • 1.9.3 Coatings (54)
        • 1.9.4 Dentistry (55)
        • 1.9.5 Ocular Implant (58)
        • 1.9.6 Otolaryngologic Applications (59)
      • 1.10 Conclusions and Prospects (59)
      • Acknowledgments (60)
      • References (60)
    • Chapter 2 Processing of Bioceramics by Extrusion and Slip Casting (71)
      • 2.1 Introduction (71)
      • 2.2 Fabrication of Bioceramics (72)
        • 2.2.1 Powder Processing (72)
        • 2.2.2 Shaping or Forming of Green Body (74)
        • 2.2.3 Drying and Removal of the Binder (76)
        • 2.2.4 Sintering (78)
      • 2.3 Green Body Formation by Extrusion (78)
      • 2.4 Green Body Formation by Slip Casting (83)
      • 2.5 Conclusions (91)
      • Acknowledgments (92)
      • References (92)
    • Chapter 3 Processing of Bioceramics by Pressing and Tape Casting (99)
      • 3.1 Background (99)
      • 3.2 Powder Treatment (100)
      • 3.3 Pressing (101)
        • 3.3.1 Uniaxial Pressing or Die Pressing (101)
        • 3.3.2 Isostatic Pressing (104)
      • 3.4 Tape Casting (106)
        • 3.4.1 Doctor Blade Tape Casting Process (106)
        • 3.4.2 Further Tape Processing (112)
        • 3.4.3 Tape Casting Applications (114)
      • 3.5 Conclusion and Future Directions (114)
      • References (114)
    • Chapter 4 Processing of Bioceramics by Additive Manufacturing (119)
      • 4.1 Introduction (119)
      • 4.2 Materials for 3D Printing of Bioceramics (122)
        • 4.2.1 Chemical Composition of the Bone (122)
        • 4.2.2 Bioinert Ceramics (123)
        • 4.2.3 Bioactive Ceramics (124)
        • 4.2.4 Biodegradable Ceramics (126)
      • 4.3 Important Characteristics of Bioceramic Scaffolds (128)
        • 4.3.1 Porosity (128)
        • 4.3.2 Mechanical Properties (128)
        • 4.3.3 Biodegradability (128)
        • 4.3.4 Biocompatibility (129)
      • 4.4 3D-Printing Techniques of Bioceramics Scaffolds (129)
        • 4.4.1 Selective Laser Sintering (SLS) (130)
        • 4.4.2 Robocasting/Direct Ink Writing (DIW) (130)
        • 4.4.3 Stereolithography (SLA) (131)
        • 4.4.4 Binder Jetting (BJ) (132)
        • 4.4.5 Digital Light Processing (DLP) (133)
        • 4.4.6 Fused Deposition Modeling (FDM) (134)
        • 4.4.7 Laminated Object Manufacturing (LOM) (135)
        • 4.4.8 Material Jetting (MJ) (136)
        • 4.4.9 Selective Laser Melting (SLM) (138)
      • 4.5 Current Research on 3D Printing of Bioceramics (139)
      • 4.6 Applications of 3D-Printed Bioceramics (142)
      • 4.7 Current Challenges and Future Research Directions (144)
      • 4.8 Summary (147)
      • References (148)
  • Section B Properties and Processing (154)
    • Chapter 5 Structural, Chemical, Electrical, Thermal, and Mechanical Properties of Bioceramics (156)
      • 5.1 Introduction (156)
      • 5.2 Properties of Bioceramics (157)
      • 5.3 Structural Properties (158)
        • 5.3.1 Atomic Bond, Structure, and Arrangement (158)
        • 5.3.2 Structural Symptoms of Hydroxyapatite [Ca10 (PO 4)6 (OH)2] (160)
      • 5.4 Chemical Properties of Bioceramics (162)
        • 5.4.1 Inert Ceramic Materials: Oxide Bioceramics (162)
      • 5.5 Electrical Properties of Bioceramics (164)
        • 5.5.1 Electroactivity of Ag-Hap Nano-Bioceramics Materials (165)
        • 5.5.2 Electrical Impedance Measurement of Hydroxyapatite (168)
      • 5.6 Thermal Properties of Bioceramics (169)
        • 5.6.1 Thermal Properties of Bioactive (SiO2 –CaO–Na2O–P2O5) Glasses (170)
        • 5.6.2 Thermal Conductivity of Ion-Substituted Hydroxyapatite Bioceramics (172)
      • 5.7 Mechanical Properties of Bioceramics (175)
        • 5.7.1 Criteria of Aluminia and Zirconia (177)
        • 5.7.2 Bioactive Glass-Ceramics Component (178)
        • 5.7.3 Mechanical Performance of Silicate Bioceramics (180)
      • 5.8 Conclusions and Future Directions (183)
      • References (184)
    • Chapter 6 Biocompatibility and Biodegradability of Bioceramics (193)
      • 6.1 Introduction (193)
      • 6.2 In Vitro Biocompatibility of Bioceramics (195)
      • 6.3 Biocompatibility Tests of Bioceramics (197)
        • 6.3.1 In Vitro Cytotoxicity Test of Bioceramics (197)
      • 6.4 Biodegradability of Bioceramics (200)
        • 6.4.1 Biodegradation of Calcium Phosphates (200)
        • 6.4.2 Biodegradation of Bioactive Glasses (202)
      • 6.5 Bioactivity of Bioceramics (203)
      • 6.6 Bioactivity versus Biodegradability of Bioceramics (204)
      • 6.7 Conclusion (205)
      • References (205)
    • Chapter 7 Modeling and Simulations on Medical Implementations of Bioceramics (213)
      • 7.1 Introduction (213)
      • 7.2 Nanobiointerface Interactions – MD Simulations (214)
      • 7.3 Dental Applications (214)
      • 7.4 Statistical Optimization in Bioceramics (215)
      • 7.5 Bone Grafting (215)
      • 7.6 Bioactive Glass and HAp (215)
      • 7.7 Density Functional Theory Calculations (216)
      • 7.8 Bioceramic Blends (217)
      • 7.9 3D Printing in Biomaterials (217)
      • 7.10 Mechanical Properties of Biomaterials (218)
      • 7.11 Summary (219)
      • References (220)
  • Section C Applications (222)
    • Chapter 8 Bioceramics: From Concept to Clinic (224)
      • 8.1 Introduction (224)
      • 8.2 Bioceramics (225)
        • 8.2.1 Bio-Physico-Chemical Properties of Bioceramics (226)
        • 8.2.2 Bioinert Ceramics (226)
        • 8.2.3 Bioresorbable Ceramics (226)
        • 8.2.4 Hydroxyapatite (HAP) (227)
      • 8.3 Metal Composition Importance in Physiological Environment (228)
        • 8.3.1 Calcium (228)
        • 8.3.2 Silica (228)
        • 8.3.3 Magnesium (228)
        • 8.3.4 Zinc (228)
        • 8.3.5 Zirconium (229)
      • 8.4 Bioceramic Materials Aspect for Biomedical Applications (229)
      • 8.5 Silicate-Based Biomaterials (230)
        • 8.5.1 Calcium Magnesium Silicates (Ca-Mg-Si) and Aluminosilicate (231)
        • 8.5.2 Bioactive Ceramics (232)
      • 8.6 Recent Advancement in Bioceramics (233)
      • 8.7 Bioceramics Reaction in Physiological Environment (235)
      • 8.8 Clinical Applications of Bioceramics (236)
        • 8.8.1 Endodontic Sealing Materials (236)
        • 8.8.2 Dental Re-mineralization Application (237)
        • 8.8.3 Tissue Regenerative Application (238)
        • 8.8.4 Drug Delivery and Haemostat (238)
      • 8.9 Conclusion (239)
      • References (239)
    • Chapter 9 Bioceramics for Cosmetic Dentistry (244)
      • 9.1 Introduction (244)
      • 9.2 Classification of Ceramic Materials (245)
        • 9.2.1 According to Composition (245)
        • 9.2.2 According to Fabrication Process (246)
        • 9.2.3 Rosenblum and Sculman 1997: Ceramic Could Be Used to Fabricate Metal-Ceramic or All-Ceramic Prosthesis (246)
        • 9.2.4 According to Gracis and Thompson: Dental Ceramic and Ceramic-Like Materials (246)
        • 9.2.5 According to Hao Yu Shi et al. Ceramic in Field of Operative Dentistry Can Be Classified as Follows (247)
      • 9.3 Properties of Dental Ceramics (247)
      • 9.4 Fabrication Techniques (247)
        • 9.4.1 Copy Milling (250)
        • 9.4.2 PROCERA and CEREC (250)
      • 9.5 Tooth Preparation for Ceramic Restorations (250)
        • 9.5.1 Veneer (250)
        • 9.5.2 INLAY (251)
      • 9.6 Surface Treatment and Bonding (252)
        • 9.6.1 Mechanical Methods (252)
        • 9.6.2 Chemical Methods (253)
        • 9.6.3 Surface Treatment for Zirconia-Based Ceramics (253)
      • 9.7 Clinical Implications (254)
        • 9.7.1 Selection of Ceramic (254)
        • 9.7.2 Clinical Scenarios (255)
      • 9.8 Finishing and Polishing (257)
      • 9.9 Failures in Ceramic Restoration (257)
      • 9.10 Repair of Ceramic Restoration (258)
      • 9.11 Conclusions and Future Directions (259)
      • Acknowledgement (260)
      • References (260)
    • Chapter 10 Bioceramics for Hip and Knee Implants (264)
      • 10.1 Introduction (264)
      • 10.2 Market Size (265)
      • 10.3 Bioceramic Components for Hip/Knee Joints (265)
      • 10.4 Classification of Bioceramics (268)
      • 10.5 Overview of Different Types of Bioceramics (270)
        • 10.5.1 Bioinert Ceramics (270)
        • 10.5.2 Bioresorbable Ceramics (275)
        • 10.5.3 Bioactive Ceramics (276)
      • 10.6 Importance of Biocompatibility of Implants (279)
      • 10.7 Biocompatibility Tests (279)
      • 10.8 Implant Failure Prevention (280)
      • 10.9 Conclusions and Future Prospects (282)
      • References (282)
    • Chapter 11 Bioceramics for Regenerative Medicine (289)
      • 11.1 Biomaterials (289)
        • 11.1.1 Ideal Biomaterial Should Be (289)
        • 11.1.2 Existing Biomaterials and Their Drawbacks (289)
        • 11.1.3 Bone Prosthetics (290)
        • 11.1.4 Bioceramics (290)
        • 11.1.5 Generations of Bioceramics (291)
        • 11.1.6 Methods of Bioceramic Preparation (291)
        • 11.1.7 Metal Oxide–Doped Bioceramics (291)
        • 11.1.8 Phosphate-Based Bioactive Glass Doped with Different Metal Oxides and Fluorides (292)
        • 11.1.9 Beneficial Effects of Metal Oxides (Ag2O, TiO2, and ZrO2) (292)
        • 11.1.10 Food and Drug Administration (293)
      • 11.2 Experimental Studies (293)
        • 11.2.1 Melt Quenching Technique (293)
        • 11.2.2 Physicochemical and Biological Characteristics of Bioceramics (294)
      • 11.3 Conclusions (304)
      • Acknowledgements (305)
      • Abbreviations (306)
      • References (306)
    • Chapter 12 Bioceramics for Drug Delivery (310)
      • 12.1 Introduction (310)
      • 12.2 Natural Ceramics in Human Body (311)
      • 12.3 Artificial Ceramics for Bone Replacement (313)
      • 12.4 Drug Delivery from Silica Mesoporous Nanoparticles (316)
        • 12.4.1 Stimuli-Responsive Drug Delivery (319)
        • 12.4.2 MSNs Loaded with Prodrugs (323)
        • 12.4.3 Selective Targeting for Drug Delivery (324)
      • 12.5 Conclusions and Future Directions (326)
      • References (326)
  • Section D Iso/Astm Specifications (334)
    • Chapter 13 Standard Terminologies and Definitions in Bioceramics (336)
      • 13.1 Introduction (336)
      • 13.2 Common Terminologies and Definitions (336)
        • 13.2.1 Medical Implants (337)
        • 13.2.2 Alumina (Al2O3) (338)
        • 13.2.3 Zirconia (ZrO2) (338)
        • 13.2.4 HA or HAp (339)
        • 13.2.5 TCP, α-TCP, and β-TCP (339)
        • 13.2.6 Biphasic Calcium Phosphate (BCP) (340)
        • 13.2.7 Mineral Trioxide Aggregate (MTA) (340)
        • 13.2.8 BG (340)
      • 13.3 Bioceramic Standards (340)
        • 13.3.1 ASTM C1161-02 (341)
        • 13.3.2 ASTM D0149-20 (342)
        • 13.3.3 ASTM C0372-94R20 (342)
        • 13.3.4 ASTM F2009-20 (342)
        • 13.3.5 ASTM F2393-12R20 (343)
        • 13.3.6 ASTM F1609-08R14 (343)
        • 13.3.7 ASTM F1538-03R17 (343)
        • 13.3.8 ASTM F1088-18 (343)
        • 13.3.9 ASTM C1424-15R19 (344)
        • 13.3.10 ASTM C1684-18 (345)
        • 13.3.11 ASTM C1273-18 (345)
        • 13.3.12 ASTM C1366-19 (346)
        • 13.3.13 ASTM C1291-18 (346)
        • 13.3.14 ASTM C1499-19 (346)
        • 13.3.15 ASTM C1674-16 (347)
        • 13.3.16 ASTM C1862-17 (347)
        • 13.3.17 ASTM C1368-18 (347)
        • 13.3.18 ASTM C1239-13R18 (348)
        • 13.3.19 ASTM C1683-10R19 (348)
        • 13.3.20 ASTM F603-12R20 (348)
        • 13.3.21 ISO 6474-1:2019 (348)
        • 13.3.22 ISO 7206-10:2018 (348)
        • 13.3.23 ISO 13779-2:2018(en) (348)
        • 13.3.24 ISO/DIS 18531(en) (349)
      • References (349)
    • Chapter 14 Standards of Mechanical, Physical, Chemical, and Biological Properties of Bioceramics (352)
      • 14.1 Introduction (352)
      • 14.2 Mechanical Property (353)
        • 14.2.1 Bio-inert (353)
        • 14.2.2 Bioactive (354)
        • 14.2.3 Bioresorbable (Biodegradable) (354)
      • 14.3 Physical Properties (356)
      • 14.4 Chemical and Biochemical Properties (357)
        • 14.4.1 Silicon Base Ceramics (357)
        • 14.4.2 Zinc-Copper-Barium Base Ceramics (357)
        • 14.4.3 Area of Application (357)
      • 14.5 Biological Properties of Bioceramics (360)
      • 14.6 Conclusion (362)
      • References (363)
    • Chapter 15 Reuse, Reduce and Recycling Standards of Bioceramics (369)
      • 15.1 Introduction (369)
      • 15.2 Bioceramics Properties (372)
      • 15.3 Bioceramics as Nanobiomaterials (374)
      • 15.4 Reuse, Reduce and Recycling of Bioceramics (374)
      • 15.5 Conclusions (378)
      • References (379)
  • Section E Challenges, Issues and Sustainability (382)
    • Chapter 16 Ethical Issues of Bioceramics (384)
      • 16.1 Introduction (384)
      • 16.2 Ethical Concerns with New Technologies (385)
      • 16.3 Biosafety and Biocompatibility (386)
      • 16.4 Ethics and Stem Cell Research (386)
      • 16.5 Ethics and Nano Biology (387)
      • 16.6 Tissue Engineering (387)
      • 16.7 Cost vs Benefit Analysis (389)
      • 16.8 Ethics and Authorship (389)
      • 16.9 Publication Ethics and Malpractice Statement (394)
        • 16.9.1 Editor’s Responsibilities (394)
        • 16.9.2 Confidentiality (394)
        • 16.9.3 Reviewers’ Responsibilities (394)
        • 16.9.4 Standards of Objectivity (394)
      • 16.10 Reporting Standards (395)
      • 16.11 Data Access and Retention (395)
      • 16.12 Conclusion (395)
      • 16.13 Future Perspectives (397)
      • References (399)
    • Chapter 17 Opportunities, Challenges and Future of Bioceramics (401)
      • 17.1 Introduction (401)
      • 17.2 Composites and Biocomposites (403)
      • 17.3 Classification of Various Bioceramics (403)
      • 17.4 Characterisation of Bone Biocomposites Using Bioceramics (404)
        • 17.4.1 Hydroxyapatite (405)
        • 17.4.2 Calcium Phosphate (406)
        • 17.4.3 Bioactive Glass (408)
        • 17.4.4 Tricalcium Phosphate (409)
      • 17.5 The Use of Bioceramics in 3D Bioprinting Technology (409)
        • 17.5.1 Chitosan (411)
        • 17.5.2 Hyaluronic Acid (412)
      • 17.6 Bioceramic Dental Cements (413)
      • 17.7 The Future Challenges and Opportunities for Bioceramics (414)
        • 17.7.1 New Opportunites Do Exist in the Field of Bioceramics (414)
        • 17.7.2 There Will Always Be Challenges (414)
        • 17.7.3 What Does the Future Hold for Bioceramics? (415)
      • 17.8 Conclusion (416)
      • References (420)
  • Index (426)
Loading...