برای استفاده از امکانات سیستم، گزینه جاوا اسکریپت در مرورگر شما باید فعال باشد
صفحه
از
0
Nonlinear microwave and RF circuits
Maas, Stephen A.
اطلاعات کتابشناختی
Nonlinear microwave and RF circuits
Author :
Maas, Stephen A.
Publisher :
Artech House,
Pub. Year :
2003
Subjects :
Microwave circuits.
Call Number :
TK 7876 .M284 2003
جستجو در محتوا
ترتيب
شماره صفحه
امتياز صفحه
فهرست مطالب
Nonlinear Microwave and RF Circuits
(4)
Nonlinear Microwave and RF Circuits
(4)
Copyright
(5)
Contents
(8)
Preface
(20)
Chapter 1 Introduction, Fundamental Concepts, and Definitions
(22)
1.1 LINEARITY AND NONLINEARITY
(22)
1.2 FREQUENCY GENERATION
(25)
1.3 NONLINEAR PHENOMENA
(34)
1.3.1 Harmonic Generation
(34)
1.3.2 Intermodulation Distortion
(35)
1.3.3 Saturation and Desensitization
(35)
1.3.4 Cross Modulation
(36)
1.3.5 AM- to- PM Conversion
(36)
1.3.6 Spurious Responses
(37)
1.3.7 Adjacent Channel Interference
(37)
1.4 APPROACHES TO ANALYSIS
(38)
1.4.1 Load Pull
(38)
1.4.2 Large- Signal Scattering Parameters
(39)
1.4.3 Time- Domain ( Transient) Analysis
(40)
1.4.4 Frequency- Domain Methods
(40)
1.4.5 The Quasistatic Assumption
(41)
1.5 POWER AND GAIN DEFINITIONS
(42)
1.6 STABILITY
(47)
Reference
(48)
Chapter 2 Solid-State Device Modeling for Quasistatic Analysis
(50)
2.1 NONLINEAR DEVICE MODELS
(50)
2.2 NONLINEAR LUMPED CIRCUIT ELEMENTS AND CONTROLLED SOURCES
(52)
2.2.1 The Substitution Theorem
(54)
2.2.2 Large- Signal Nonlinear Resistive Elements
(55)
2.2.3 Small- Signal Nonlinear Resistive Elements
(56)
2.2.4 Large- Signal Nonlinear Capacitance
(59)
2.2.5 Small- Signal Nonlinear Capacitance
(60)
2.2.6 Relationship Between I/ V, Q/ V and G/ V, C/ V Expansions
(62)
2.2.7 Multiply Controlled Nonlinear Capacitors
(64)
2.2.8 Nonlinear Inductance
(68)
2.3 NUMERICAL AND HUMAN REQUIREMENTS FOR DEVICE MODELS
(69)
2.3.1 Continuous Derivatives in I/ V or Q/ V Expressions
(69)
2.3.2 Accuracy of Derivatives
(70)
2.3.3 Range of Expressions
(70)
2.3.4 Transient- Analysis Models in Harmonic- Balance Analysis
(71)
2.3.5 Matrix Conditioning
(71)
2.3.6 Limiting the Range of Control Voltages
(72)
2.3.7 Use of Polynomials
(73)
2.3.8 Loops of Control Voltages
(74)
2.3.9 Default Parameters
(74)
2.3.10 Error Trapping
(75)
2.3.11 Lucidity of Models and Parameters
(76)
2.3.12 Does Complexity Improve a Model?
(76)
2.4 SCHOTTKY- BARRIER AND JUNCTION DIODES
(77)
2.4.1 Structure and Fabrication
(78)
2.4.2 The Schottky- Barrier Diode Model
(79)
2.4.3 Mixer Diodes
(86)
2.4.4 Schottky- Barrier Varactors
(87)
2.4.5 p+ n Junction Varactors
(89)
2.4.6 Varactor Modeling
(91)
2.4.7 Step- Recovery Diodes
(92)
2.5 FET DEVICES
(94)
2.5.1 MESFET Operation
(95)
2.5.2 HEMT Operation
(99)
2.5.3 MOSFET Operation
(100)
2.5.4 MESFET Modeling
(102)
2.5.5 HEMT Modeling
(107)
2.5.6 MOSFET Modeling
(109)
2.5.7 FET Capacitances
(111)
2.6 BIPOLAR DEVICES
(116)
2.6.1 BJT Operation
(117)
2.6.2 HBT Operation
(121)
2.6.3 BJT Modeling
(122)
2.6.4 HBT Modeling
(125)
2.7 THERMAL MODELING
(125)
2.8 PARAMETER EXTRACTION
(129)
2.8.1 Diode Parameter Extraction
(130)
2.8.2 FET Parameter Extraction
(132)
2.8.3 Parameter Extraction for Bipolar Devices
(136)
2.8.4 Final Notes on Parameter Extraction
(137)
References
(138)
Chapter 3 Harmonic-Balance Analysis and Related Methods
(140)
3.1 WHY USE HARMONIC- BALANCE ANALYSIS?
(140)
3.2 AN HEURISTIC INTRODUCTION TO HARMONICBALANCE ANALYSIS
(141)
3.3 SINGLE- TONE HARMONIC- BALANCE ANALYSIS
(145)
3.3.1 Circuit Partitioning
(145)
3.3.2 The Nonlinear Subcircuit
(150)
3.3.3 The Linear Subcircuit
(156)
3.3.4 Solution Algorithms
(158)
3.3.5 Newton Solution of the Harmonic- Balance Equation
(161)
3.3.6 Selecting the Number of Harmonics and Time Samples
(170)
3.3.7 Matrix Methods for Solving ( 3.37)
(172)
3.3.8 Norm Reduction
(176)
3.3.9 Optimizing Convergence and Efficiency
(177)
3.4 LARGE- SIGNAL/ SMALL- SIGNAL ANALYSIS USING CONVERSION MATRICES
(185)
3.4.1 Conversion Matrix Formulation
(186)
3.4.2 Applying Conversion Matrices to Time- Varying Circuits
(196)
3.4.3 Nodal Formulation
(206)
3.5 MULTITONE EXCITATION AND INTERMODULATION IN TIME- VARYING CIRCUITS
(208)
3.6 MULTITONE HARMONIC- BALANCE ANALYSIS
(219)
3.6.1 Generalizing the Harmonic- Balance Concept
(219)
3.6.2 Reformulation and Fourier Transformation
(221)
3.6.3 Discrete Fourier Transforms
(222)
3.6.4 Almost- Periodic Fourier Transform ( APFT)
(224)
3.6.5 Two- Dimensional FFT
(225)
3.6.6 Artificial Frequency Mapping
(226)
3.6.7 Frequency Sets
(227)
3.6.8 Determining the Jacobian
(228)
3.7 MODULATED WAVEFORMS AND ENVELOPE ANALYSIS
(230)
3.7.1 Modulated Signals
(230)
3.7.2 Envelope Analysis
(232)
References
(233)
Chapter 4 Volterra-Series and Power-Series Analysis
(236)
4.1 POWER- SERIES ANALYSIS
(237)
4.1.1 Power- Series Model and Multitone Response
(237)
4.1.2 Frequency Generation
(245)
4.1.3 Intercept Point and Power Relations
(246)
4.1.4 Intermodulation Measurement
(252)
4.1.5 Interconnections of Weakly Nonlinear Components
(253)
4.2 VOLTERRA- SERIES ANALYSIS
(256)
4.2.1 Introduction to the Volterra Series
(256)
4.2.2 Volterra Functionals and Nonlinear Transfer Functions
(258)
4.2.3 Determining Nonlinear Transfer Functions by the Harmonic Input Method
(262)
4.2.4 Applying Nonlinear Transfer Functions
(272)
4.2.5 The Method of Nonlinear Currents
(275)
4.2.6 Application to Large Circuits
(286)
4.2.7 Controlled Sources
(295)
4.2.8 Spectral Regrowth and Adjacent- Channel Power
(295)
References
(297)
Chapter 5 Balanced and Multiple-Device Circuits
(298)
5.1 Balanced Circuits Using Microwave Hybrids
(299)
5.1.1 Properties of Ideal Hybrids
(299)
5.1.2 Practical Hybrids
(301)
5.1.3 Properties of Hybrid- Coupled Components
(309)
5.2 Direct Interconnection of Microwave Components
(321)
5.2.1 Harmonic Properties of Two- Terminal Device Interconnections
(322)
References
(336)
Chapter 6 Diode Mixers
(338)
6.1 MIXER DIODES
(338)
6.1.1 Mixer- Diode Types
(339)
6.2 NONLINEAR ANALYSIS OF MIXERS
(345)
6.2.1 Multitone Harmonic- Balance Analysis of Mixers
(345)
6.3 SINGLE- DIODE MIXER DESIGN
(349)
6.3.1 Design Approach
(350)
6.3.2 Design Philosophy
(350)
6.3.3 Diode Selection
(354)
6.3.4 dc Bias
(356)
6.3.5 Design Example
(356)
6.4 BALANCED MIXERS
(360)
6.4.1 Singly Balanced Mixers
(360)
6.4.2 Singly Balanced Mixer Example
(364)
6.4.3 Doubly Balanced Mixers
(366)
References
(375)
Chapter 7 Diode Frequency Multipliers
(376)
7.1 VARACTOR FREQUENCY MULTIPLIERS
(377)
7.1.1 Noise Considerations
(377)
7.1.2 Power Relations and Efficiency Limitations
(378)
7.1.3 Design of Varactor Frequency Multipliers
(382)
7.1.4 Design Example of a Varactor Multiplier
(385)
7.1.5 Final Details
(387)
7.2 STEP- RECOVERY DIODE MULTIPLIERS
(391)
7.2.1 Multiplier Operation
(392)
7.2.2 Design Example of an SRD Multiplier
(399)
7.2.3 Harmonic- Balance Simulation of SRD Multipliers
(402)
7.3 RESISTIVE DIODE FREQUENCY MULTIPLIERS
(403)
7.3.1 Approximate Analysis and Design of Resistive Doublers
(403)
7.3.2 Design Example of a Resistive Doubler
(409)
7.4 BALANCED MULTIPLIERS
(412)
References
(413)
Chapter 8 Small-Signal Amplifiers
(416)
8.1 REVIEW OF LINEAR AMPLIFIER THEORY
(416)
8.1.1 Stability Considerations in Linear Amplifier Design
(416)
8.1.2 Amplifier Design
(421)
8.1.3 Characteristics of FETs and Bipolars in Small- Signal Amplifiers
(426)
8.1.4 Broadband Amplifiers
(427)
8.1.5 Negative- Image Modeling
(428)
8.2 NONLINEAR ANALYSIS
(430)
8.2.1 Nonlinearities in FETs
(431)
8.2.2 Nonlinearities in Bipolar Devices
(434)
8.2.3 Nonlinear Phenomena in Small- Signal Amplifiers
(436)
8.2.4 Calculating the Nonlinear Transfer Functions
(442)
8.3 LINEARITY OPTIMIZATION
(442)
8.3.1 Linearity Criteria
(442)
8.3.2 MESFETs and HEMTs
(444)
8.3.3 HBTs and BJTs
(449)
References
(451)
Chapter 9 Power Amplifiers
(452)
9.1 FET AND BIPOLAR DEVICES FOR POWER AMPLIFIERS
(452)
9.1.1 Device Structure
(452)
9.1.2 Modeling Power Devices
(455)
9.2 POWER- AMPLIFIER DESIGN
(460)
9.2.1 Class- A Amplifiers
(460)
9.2.2 Class- B Amplifiers
(464)
9.2.3 Other Modes of Operation
(468)
9.3 DESIGN OF SOLID- STATE POWER AMPLIFIERS
(470)
9.3.1 Approximate Design of Class- A FET Amplifiers
(470)
9.3.2 Approximate Design of Class- A Bipolar Amplifiers
(474)
9.3.3 Approximate Design of Class- B Amplifiers
(475)
9.3.4 Push- Pull Class- B Amplifiers
(477)
9.3.5 Harmonic Terminations
(477)
9.3.6 Design Example: HBT Power Amplifier
(478)
9.4 HARMONIC- BALANCE ANALYSIS OF POWER AMPLIFIERS
(483)
9.4.1 Single- Tone Analysis
(483)
9.4.2 Multitone Analysis
(484)
9.5 PRACTICAL CONSIDERATIONS IN POWER- AMPLIFIER DESIGN
(486)
9.5.1 Low Impedance and High Current
(486)
9.5.2 Uniform Excitation of Multicell Devices
(487)
9.5.3 Odd- Mode Oscillation
(488)
9.5.4 Efficiency and Load Optimization
(488)
9.5.5 Back- off and Linearity
(489)
9.5.6 Voltage Biasing and Current Biasing in Bipolar Devices
(491)
9.5.7 Prematching
(492)
9.5.8 Thermal Considerations
(492)
References
(494)
Chapter 10 Active Frequency Multipliers
(496)
10.1 DESIGN PHILOSOPHY
(496)
10.2 DESIGN OF FET FREQUENCY MULTIPLIERS
(498)
10.2.1 Design Theory
(498)
10.2.2 Design Example: A Simple FET Multiplier
(504)
10.2.3 Design Example: A Broadband Frequency Multiplier
(508)
10.2.4 Bipolar Frequency Multipliers
(511)
10.3 HARMONIC- BALANCE ANALYSIS OF ACTIVE FREQUENCY MULTIPLIERS
(511)
10.4 PRACTICAL CONSIDERATIONS
(512)
10.4.1 Effect of Gate and Drain Terminations at Unwanted Harmonics
(512)
10.4.2 Balanced Frequency Multipliers
(512)
10.4.3 Noise
(514)
10.4.4 Harmonic Rejection
(515)
10.4.5 Stability
(515)
10.4.6 High- Order Multiplication
(516)
References
(516)
Chapter 11 Active Mixers and FET Resistive Mixers
(518)
11.1 DESIGN OF SINGLE- GATE FET MIXERS
(518)
11.1.1 Design Philosophy
(518)
11.1.2 Approximate Mixer Analysis
(522)
11.1.3 Bipolar Mixers
(526)
11.1.4 Matching Circuits in Active Mixers
(527)
11.1.5 Nonlinear Analysis of Active Mixers
(529)
11.1.6 Design Example: Simple, Active FET Mixer
(529)
11.2 DUAL- GATE FET MIXERS
(531)
11.3 BALANCED ACTIVE MIXERS
(536)
11.3.1 Singly Balanced Mixers
(536)
11.3.2 Design Example: Computer- Oriented Design Approach
(539)
11.3.3 Doubly Balanced FET Mixers
(541)
11.3.4 Active Baluns
(543)
11.3.5 Gilbert- Cell Mixers
(545)
11.4 FET RESISTIVE MIXERS
(546)
11.4.1 Fundamentals
(547)
11.4.2 Single- FET Resistive Mixers
(548)
11.4.3 Design of Single- FET Resistive Mixers
(549)
11.4.4 Design Example: FET Resistive Mixer
(550)
11.4.5 Balanced FET Resistive Mixers
(551)
References
(557)
Chapter 12 Transistor Oscillators
(558)
12.1 CLASSICAL OSCILLATOR THEORY
(558)
12.1.1 Feedback Oscillator Theory
(558)
12.1.2 Feedback Oscillator Design
(561)
12.1.3 Negative- Resistance Oscillation
(563)
12.1.4 Negative Resistance in Transistors
(566)
12.1.5 Oscillator Design by the Classical Approach
(570)
12.2 NONLINEAR ANALYSIS OF TRANSISTOR OSCILLATORS
(576)
12.2.1 Numerical Device- Line Measurements
(577)
12.2.2 Harmonic Balance: Method 1
(578)
12.2.3 Harmonic Balance: Method 2
(580)
12.2.4 Eigenvalue Formulation
(581)
12.3 PRACTICAL ASPECTS OF OSCILLATOR DESIGN
(583)
12.3.1 Multiple Resonances
(583)
12.3.2 Frequency Stability
(583)
12.3.3 Dielectric Resonators
(584)
12.3.4 Hyperabrupt Varactors
(585)
12.3.5 Phase Noise
(587)
12.3.6 Pushing and Pulling
(594)
12.3.7 Post- Tuning Drift
(594)
12.3.8 Harmonics and Spurious Outputs
(594)
References
(595)
About the Author
(596)
Index
(598)