کتابخانه مرکزی دانشگاه صنعتی شریف
    • [نمايش بزرگتر]
    • [نمايش کوچکتر]
  • صفحه 
     از  0
  • [صفحه قبل]
  • [صفحه بعد]
  • [نمایش تمام صفحه]
  • [بستن]
 
Nonlinear microwave and RF circuits
Maas, Stephen A.

اطلاعات کتابشناختی

Nonlinear microwave and RF circuits
Author :   Maas, Stephen A.
Publisher :   Artech House,
Pub. Year  :   2003
Subjects :   Microwave circuits.
Call Number :   ‭TK 7876 .M284 2003

جستجو در محتوا

ترتيب

فهرست مطالب

  • Nonlinear Microwave and RF Circuits (4)
    • Nonlinear Microwave and RF Circuits (4)
      • Copyright (5)
      • Contents (8)
      • Preface (20)
    • Chapter 1 Introduction, Fundamental Concepts, and Definitions (22)
      • 1.1 LINEARITY AND NONLINEARITY (22)
      • 1.2 FREQUENCY GENERATION (25)
      • 1.3 NONLINEAR PHENOMENA (34)
        • 1.3.1 Harmonic Generation (34)
        • 1.3.2 Intermodulation Distortion (35)
        • 1.3.3 Saturation and Desensitization (35)
        • 1.3.4 Cross Modulation (36)
        • 1.3.5 AM- to- PM Conversion (36)
        • 1.3.6 Spurious Responses (37)
        • 1.3.7 Adjacent Channel Interference (37)
      • 1.4 APPROACHES TO ANALYSIS (38)
        • 1.4.1 Load Pull (38)
        • 1.4.2 Large- Signal Scattering Parameters (39)
        • 1.4.3 Time- Domain ( Transient) Analysis (40)
        • 1.4.4 Frequency- Domain Methods (40)
        • 1.4.5 The Quasistatic Assumption (41)
      • 1.5 POWER AND GAIN DEFINITIONS (42)
      • 1.6 STABILITY (47)
      • Reference (48)
    • Chapter 2 Solid-State Device Modeling for Quasistatic Analysis (50)
      • 2.1 NONLINEAR DEVICE MODELS (50)
      • 2.2 NONLINEAR LUMPED CIRCUIT ELEMENTS AND CONTROLLED SOURCES (52)
        • 2.2.1 The Substitution Theorem (54)
        • 2.2.2 Large- Signal Nonlinear Resistive Elements (55)
        • 2.2.3 Small- Signal Nonlinear Resistive Elements (56)
        • 2.2.4 Large- Signal Nonlinear Capacitance (59)
        • 2.2.5 Small- Signal Nonlinear Capacitance (60)
        • 2.2.6 Relationship Between I/ V, Q/ V and G/ V, C/ V Expansions (62)
        • 2.2.7 Multiply Controlled Nonlinear Capacitors (64)
        • 2.2.8 Nonlinear Inductance (68)
      • 2.3 NUMERICAL AND HUMAN REQUIREMENTS FOR DEVICE MODELS (69)
        • 2.3.1 Continuous Derivatives in I/ V or Q/ V Expressions (69)
        • 2.3.2 Accuracy of Derivatives (70)
        • 2.3.3 Range of Expressions (70)
        • 2.3.4 Transient- Analysis Models in Harmonic- Balance Analysis (71)
        • 2.3.5 Matrix Conditioning (71)
        • 2.3.6 Limiting the Range of Control Voltages (72)
        • 2.3.7 Use of Polynomials (73)
        • 2.3.8 Loops of Control Voltages (74)
        • 2.3.9 Default Parameters (74)
        • 2.3.10 Error Trapping (75)
        • 2.3.11 Lucidity of Models and Parameters (76)
        • 2.3.12 Does Complexity Improve a Model? (76)
      • 2.4 SCHOTTKY- BARRIER AND JUNCTION DIODES (77)
        • 2.4.1 Structure and Fabrication (78)
        • 2.4.2 The Schottky- Barrier Diode Model (79)
        • 2.4.3 Mixer Diodes (86)
        • 2.4.4 Schottky- Barrier Varactors (87)
        • 2.4.5 p+ n Junction Varactors (89)
        • 2.4.6 Varactor Modeling (91)
        • 2.4.7 Step- Recovery Diodes (92)
      • 2.5 FET DEVICES (94)
        • 2.5.1 MESFET Operation (95)
        • 2.5.2 HEMT Operation (99)
        • 2.5.3 MOSFET Operation (100)
        • 2.5.4 MESFET Modeling (102)
        • 2.5.5 HEMT Modeling (107)
        • 2.5.6 MOSFET Modeling (109)
        • 2.5.7 FET Capacitances (111)
      • 2.6 BIPOLAR DEVICES (116)
        • 2.6.1 BJT Operation (117)
        • 2.6.2 HBT Operation (121)
        • 2.6.3 BJT Modeling (122)
        • 2.6.4 HBT Modeling (125)
      • 2.7 THERMAL MODELING (125)
      • 2.8 PARAMETER EXTRACTION (129)
        • 2.8.1 Diode Parameter Extraction (130)
        • 2.8.2 FET Parameter Extraction (132)
        • 2.8.3 Parameter Extraction for Bipolar Devices (136)
        • 2.8.4 Final Notes on Parameter Extraction (137)
      • References (138)
    • Chapter 3 Harmonic-Balance Analysis and Related Methods (140)
      • 3.1 WHY USE HARMONIC- BALANCE ANALYSIS? (140)
      • 3.2 AN HEURISTIC INTRODUCTION TO HARMONICBALANCE ANALYSIS (141)
      • 3.3 SINGLE- TONE HARMONIC- BALANCE ANALYSIS (145)
        • 3.3.1 Circuit Partitioning (145)
        • 3.3.2 The Nonlinear Subcircuit (150)
        • 3.3.3 The Linear Subcircuit (156)
        • 3.3.4 Solution Algorithms (158)
        • 3.3.5 Newton Solution of the Harmonic- Balance Equation (161)
        • 3.3.6 Selecting the Number of Harmonics and Time Samples (170)
        • 3.3.7 Matrix Methods for Solving ( 3.37) (172)
        • 3.3.8 Norm Reduction (176)
        • 3.3.9 Optimizing Convergence and Efficiency (177)
      • 3.4 LARGE- SIGNAL/ SMALL- SIGNAL ANALYSIS USING CONVERSION MATRICES (185)
        • 3.4.1 Conversion Matrix Formulation (186)
        • 3.4.2 Applying Conversion Matrices to Time- Varying Circuits (196)
        • 3.4.3 Nodal Formulation (206)
      • 3.5 MULTITONE EXCITATION AND INTERMODULATION IN TIME- VARYING CIRCUITS (208)
      • 3.6 MULTITONE HARMONIC- BALANCE ANALYSIS (219)
        • 3.6.1 Generalizing the Harmonic- Balance Concept (219)
        • 3.6.2 Reformulation and Fourier Transformation (221)
        • 3.6.3 Discrete Fourier Transforms (222)
        • 3.6.4 Almost- Periodic Fourier Transform ( APFT) (224)
        • 3.6.5 Two- Dimensional FFT (225)
        • 3.6.6 Artificial Frequency Mapping (226)
        • 3.6.7 Frequency Sets (227)
        • 3.6.8 Determining the Jacobian (228)
      • 3.7 MODULATED WAVEFORMS AND ENVELOPE ANALYSIS (230)
        • 3.7.1 Modulated Signals (230)
        • 3.7.2 Envelope Analysis (232)
      • References (233)
    • Chapter 4 Volterra-Series and Power-Series Analysis (236)
      • 4.1 POWER- SERIES ANALYSIS (237)
        • 4.1.1 Power- Series Model and Multitone Response (237)
        • 4.1.2 Frequency Generation (245)
        • 4.1.3 Intercept Point and Power Relations (246)
        • 4.1.4 Intermodulation Measurement (252)
        • 4.1.5 Interconnections of Weakly Nonlinear Components (253)
      • 4.2 VOLTERRA- SERIES ANALYSIS (256)
        • 4.2.1 Introduction to the Volterra Series (256)
        • 4.2.2 Volterra Functionals and Nonlinear Transfer Functions (258)
        • 4.2.3 Determining Nonlinear Transfer Functions by the Harmonic Input Method (262)
        • 4.2.4 Applying Nonlinear Transfer Functions (272)
        • 4.2.5 The Method of Nonlinear Currents (275)
        • 4.2.6 Application to Large Circuits (286)
        • 4.2.7 Controlled Sources (295)
        • 4.2.8 Spectral Regrowth and Adjacent- Channel Power (295)
      • References (297)
    • Chapter 5 Balanced and Multiple-Device Circuits (298)
      • 5.1 Balanced Circuits Using Microwave Hybrids (299)
        • 5.1.1 Properties of Ideal Hybrids (299)
        • 5.1.2 Practical Hybrids (301)
        • 5.1.3 Properties of Hybrid- Coupled Components (309)
      • 5.2 Direct Interconnection of Microwave Components (321)
        • 5.2.1 Harmonic Properties of Two- Terminal Device Interconnections (322)
      • References (336)
    • Chapter 6 Diode Mixers (338)
      • 6.1 MIXER DIODES (338)
        • 6.1.1 Mixer- Diode Types (339)
      • 6.2 NONLINEAR ANALYSIS OF MIXERS (345)
        • 6.2.1 Multitone Harmonic- Balance Analysis of Mixers (345)
      • 6.3 SINGLE- DIODE MIXER DESIGN (349)
        • 6.3.1 Design Approach (350)
        • 6.3.2 Design Philosophy (350)
        • 6.3.3 Diode Selection (354)
        • 6.3.4 dc Bias (356)
        • 6.3.5 Design Example (356)
      • 6.4 BALANCED MIXERS (360)
        • 6.4.1 Singly Balanced Mixers (360)
        • 6.4.2 Singly Balanced Mixer Example (364)
        • 6.4.3 Doubly Balanced Mixers (366)
      • References (375)
    • Chapter 7 Diode Frequency Multipliers (376)
      • 7.1 VARACTOR FREQUENCY MULTIPLIERS (377)
        • 7.1.1 Noise Considerations (377)
        • 7.1.2 Power Relations and Efficiency Limitations (378)
        • 7.1.3 Design of Varactor Frequency Multipliers (382)
        • 7.1.4 Design Example of a Varactor Multiplier (385)
        • 7.1.5 Final Details (387)
      • 7.2 STEP- RECOVERY DIODE MULTIPLIERS (391)
        • 7.2.1 Multiplier Operation (392)
        • 7.2.2 Design Example of an SRD Multiplier (399)
        • 7.2.3 Harmonic- Balance Simulation of SRD Multipliers (402)
      • 7.3 RESISTIVE DIODE FREQUENCY MULTIPLIERS (403)
        • 7.3.1 Approximate Analysis and Design of Resistive Doublers (403)
        • 7.3.2 Design Example of a Resistive Doubler (409)
      • 7.4 BALANCED MULTIPLIERS (412)
      • References (413)
    • Chapter 8 Small-Signal Amplifiers (416)
      • 8.1 REVIEW OF LINEAR AMPLIFIER THEORY (416)
        • 8.1.1 Stability Considerations in Linear Amplifier Design (416)
        • 8.1.2 Amplifier Design (421)
        • 8.1.3 Characteristics of FETs and Bipolars in Small- Signal Amplifiers (426)
        • 8.1.4 Broadband Amplifiers (427)
        • 8.1.5 Negative- Image Modeling (428)
      • 8.2 NONLINEAR ANALYSIS (430)
        • 8.2.1 Nonlinearities in FETs (431)
        • 8.2.2 Nonlinearities in Bipolar Devices (434)
        • 8.2.3 Nonlinear Phenomena in Small- Signal Amplifiers (436)
        • 8.2.4 Calculating the Nonlinear Transfer Functions (442)
      • 8.3 LINEARITY OPTIMIZATION (442)
        • 8.3.1 Linearity Criteria (442)
        • 8.3.2 MESFETs and HEMTs (444)
        • 8.3.3 HBTs and BJTs (449)
      • References (451)
    • Chapter 9 Power Amplifiers (452)
      • 9.1 FET AND BIPOLAR DEVICES FOR POWER AMPLIFIERS (452)
        • 9.1.1 Device Structure (452)
        • 9.1.2 Modeling Power Devices (455)
      • 9.2 POWER- AMPLIFIER DESIGN (460)
        • 9.2.1 Class- A Amplifiers (460)
        • 9.2.2 Class- B Amplifiers (464)
        • 9.2.3 Other Modes of Operation (468)
      • 9.3 DESIGN OF SOLID- STATE POWER AMPLIFIERS (470)
        • 9.3.1 Approximate Design of Class- A FET Amplifiers (470)
        • 9.3.2 Approximate Design of Class- A Bipolar Amplifiers (474)
        • 9.3.3 Approximate Design of Class- B Amplifiers (475)
        • 9.3.4 Push- Pull Class- B Amplifiers (477)
        • 9.3.5 Harmonic Terminations (477)
        • 9.3.6 Design Example: HBT Power Amplifier (478)
      • 9.4 HARMONIC- BALANCE ANALYSIS OF POWER AMPLIFIERS (483)
        • 9.4.1 Single- Tone Analysis (483)
        • 9.4.2 Multitone Analysis (484)
      • 9.5 PRACTICAL CONSIDERATIONS IN POWER- AMPLIFIER DESIGN (486)
        • 9.5.1 Low Impedance and High Current (486)
        • 9.5.2 Uniform Excitation of Multicell Devices (487)
        • 9.5.3 Odd- Mode Oscillation (488)
        • 9.5.4 Efficiency and Load Optimization (488)
        • 9.5.5 Back- off and Linearity (489)
        • 9.5.6 Voltage Biasing and Current Biasing in Bipolar Devices (491)
        • 9.5.7 Prematching (492)
        • 9.5.8 Thermal Considerations (492)
      • References (494)
    • Chapter 10 Active Frequency Multipliers (496)
      • 10.1 DESIGN PHILOSOPHY (496)
      • 10.2 DESIGN OF FET FREQUENCY MULTIPLIERS (498)
        • 10.2.1 Design Theory (498)
        • 10.2.2 Design Example: A Simple FET Multiplier (504)
        • 10.2.3 Design Example: A Broadband Frequency Multiplier (508)
        • 10.2.4 Bipolar Frequency Multipliers (511)
      • 10.3 HARMONIC- BALANCE ANALYSIS OF ACTIVE FREQUENCY MULTIPLIERS (511)
      • 10.4 PRACTICAL CONSIDERATIONS (512)
        • 10.4.1 Effect of Gate and Drain Terminations at Unwanted Harmonics (512)
        • 10.4.2 Balanced Frequency Multipliers (512)
        • 10.4.3 Noise (514)
        • 10.4.4 Harmonic Rejection (515)
        • 10.4.5 Stability (515)
        • 10.4.6 High- Order Multiplication (516)
      • References (516)
    • Chapter 11 Active Mixers and FET Resistive Mixers (518)
      • 11.1 DESIGN OF SINGLE- GATE FET MIXERS (518)
        • 11.1.1 Design Philosophy (518)
        • 11.1.2 Approximate Mixer Analysis (522)
        • 11.1.3 Bipolar Mixers (526)
        • 11.1.4 Matching Circuits in Active Mixers (527)
        • 11.1.5 Nonlinear Analysis of Active Mixers (529)
        • 11.1.6 Design Example: Simple, Active FET Mixer (529)
      • 11.2 DUAL- GATE FET MIXERS (531)
      • 11.3 BALANCED ACTIVE MIXERS (536)
        • 11.3.1 Singly Balanced Mixers (536)
        • 11.3.2 Design Example: Computer- Oriented Design Approach (539)
        • 11.3.3 Doubly Balanced FET Mixers (541)
        • 11.3.4 Active Baluns (543)
        • 11.3.5 Gilbert- Cell Mixers (545)
      • 11.4 FET RESISTIVE MIXERS (546)
        • 11.4.1 Fundamentals (547)
        • 11.4.2 Single- FET Resistive Mixers (548)
        • 11.4.3 Design of Single- FET Resistive Mixers (549)
        • 11.4.4 Design Example: FET Resistive Mixer (550)
        • 11.4.5 Balanced FET Resistive Mixers (551)
      • References (557)
    • Chapter 12 Transistor Oscillators (558)
      • 12.1 CLASSICAL OSCILLATOR THEORY (558)
        • 12.1.1 Feedback Oscillator Theory (558)
        • 12.1.2 Feedback Oscillator Design (561)
        • 12.1.3 Negative- Resistance Oscillation (563)
        • 12.1.4 Negative Resistance in Transistors (566)
        • 12.1.5 Oscillator Design by the Classical Approach (570)
      • 12.2 NONLINEAR ANALYSIS OF TRANSISTOR OSCILLATORS (576)
        • 12.2.1 Numerical Device- Line Measurements (577)
        • 12.2.2 Harmonic Balance: Method 1 (578)
        • 12.2.3 Harmonic Balance: Method 2 (580)
        • 12.2.4 Eigenvalue Formulation (581)
      • 12.3 PRACTICAL ASPECTS OF OSCILLATOR DESIGN (583)
        • 12.3.1 Multiple Resonances (583)
        • 12.3.2 Frequency Stability (583)
        • 12.3.3 Dielectric Resonators (584)
        • 12.3.4 Hyperabrupt Varactors (585)
        • 12.3.5 Phase Noise (587)
        • 12.3.6 Pushing and Pulling (594)
        • 12.3.7 Post- Tuning Drift (594)
        • 12.3.8 Harmonics and Spurious Outputs (594)
      • References (595)
    • About the Author (596)
    • Index (598)
Loading...