کتابخانه مرکزی دانشگاه صنعتی شریف
    • [نمايش بزرگتر]
    • [نمايش کوچکتر]
  • صفحه 
     از  0
  • [صفحه قبل]
  • [صفحه بعد]
  • [نمایش تمام صفحه]
  • [بستن]
 
Power system state estimation: theory and implementation
Abur, Ali,

اطلاعات کتابشناختی

Power system state estimation: theory and implementation
Author :   Abur, Ali,
Publisher :   Marcel Dekker,
Pub. Year  :   2004
Subjects :   Electric power systems -- State estimation.
Call Number :   ‭TK 1005 .A264 2004

جستجو در محتوا

ترتيب

فهرست مطالب

  • dke507_fm.pdf
    • Power System State Estimation: Theory And Implementation (1)
      • Power Engineering (3)
      • Dedication (5)
      • Foreword (6)
      • Preface (8)
      • Contents (10)
  • DKE507_CH01.pdf
    • Power System State Estimation: Theory and Implementation (16)
      • Contents
      • Chapter 1: Introduction (16)
        • 1.1 Operating States of a Power System (16)
        • 1.2 Power System Security Analysis (17)
        • 1.3 State Estimation (20)
        • 1.4 Summary (21)
        • References (22)
  • DKE507_CH02.pdf
    • Power System State Estimation: Theory and Implementation (24)
      • Contents
      • Chapter 2: Weighted Least Squares State Estimation (24)
        • 2.1 Introduction (24)
        • 2.2 Component Modeling and Assumptions (25)
          • 2.2.1 Transmission Lines (25)
          • 2.2.2 Shunt Capacitors or Reactors (25)
          • 2.2.3 Tap Changing and Phase Shifting Transformers (25)
          • 2.2.4 Loads and Generators (27)
        • 2.3 Building the Network Model (27)
        • 2.4 Maximum Likelihood Estimation (30)
          • 2.4.1 Gaussian (Normal) probability density function (30)
          • 2.4.2 The likelihood function (32)
        • 2.5 Measurement Model and Assumptions (33)
        • 2.6 WLS State Estimation Algorithm (35)
          • 2.6.1 The Measurement Function, h(xk) (36)
          • 2.6.2 The Measurement Jacobian, H (38)
          • 2.6.3 The Gain Matrix, G (40)
          • 2.6.4 Cholesky Decomposition of G (42)
          • 2.6.5 Performing the Forward/Back Substitutions (42)
        • 2.7 Decoupled Formulation of the (44)
        • 2.8 DC State Estimation Model (48)
        • 2.9 Problems (48)
        • References (51)
  • DKE507_CH03.pdf
    • Power System State Estimation: Theory and Implementation (52)
      • Contents
      • Chapter 3: Alternative Formulations of the WLS State Estimation (52)
        • 3.1 Weaknesses of the Normal Equations Formulation (52)
        • 3.2 Orthogonal Factorization (57)
        • 3.3 Hybrid Method (58)
        • 3.4 Method of Peters and Wilkinson (60)
        • 3.5 Equality- Constrained WLS State Estimation (61)
        • 3.6 Augmented Matrix Approach (63)
        • 3.7 Blocked Formulation (65)
        • 3.8 Comparison of Techniques (69)
        • 3.9 Problems (71)
        • References (72)
  • DKE507_CH04.pdf
    • Power System State Estimation: Theory and Implementation (74)
      • Contents
      • Chapter 4: Network Observability Analysis (74)
        • 4.1 Networks and Graphs (75)
          • 4.1.1 Graphs (75)
          • 4.1.2 Networks (76)
        • 4.2 Network Matrices (76)
          • 4.2.1 Branch to Bus Incidence Matrix (77)
          • 4.2.2 Fundamental Loop to Branch Incidence Matrix (78)
        • 4.3 Loop Equations (80)
        • 4.4 Methods of Observability Analysis (81)
        • 4.5 Numerical Method Based on the Branch Variable Formulation (82)
          • 4.5.1 New Branch Variables (82)
          • 4.5.2 Measurement Equations (83)
          • 4.5.3 Linearized Measurement Model (85)
          • 4.5.4 Observability Analysis (87)
        • 4.6 Numerical Method Based on the Nodal Variable Formulation (91)
          • 4.6.1 Determining the Unobservable Branches (94)
          • 4.6.2 Identification of Observable Islands (96)
          • 4.6.3 Measurement Placement to Restore Observability (99)
        • 4.7 Topological Observability Analysis Method (104)
          • 4.7.1 Topological Observability Algorithm (104)
          • 4.7.2 Identifying the Observable Islands (105)
        • 4.8 Determination of Critical Measurements (105)
        • 4.9 Measurement Design (108)
        • 4.10 Summary (108)
        • 4.11 Problems (108)
        • References (112)
  • DKE507_CH05.pdf
    • Power System State Estimation: Theory and Implementation (114)
      • Contents
      • Chapter 5: Bad Data Detection and Identification (114)
        • 5.1 Properties of Measurement Residuals (116)
        • 5.2 Classification of Measurements (119)
        • 5.3 Bad Data Detection and IdentiRability (119)
        • 5.4 Bad Data Detection (120)
          • 5.4.1 Chi-squares x^ Distribution (120)
          • 5.4.2 Use of Y^ Distribution for Bad Data Detection (121)
          • 5.4.3 x2-Test for Detecting Bad Data in WLS State Estimation (123)
          • 5.4.4 Use of Normalized Residuals for Bad Data Detection (125)
        • 5.5 Properties of Normalized Residuals (126)
        • 5.6 Bad Data Identification (126)
        • 5.7 Largest Normalized Residual (rNMax ) Test (126)
          • 5.7.1 Computational Issues (128)
          • 5.7.2 Strengths and Limitations of the rNMax Test (130)
        • 5.8 Hypothesis Testing Identification ( HTI) (131)
          • 5.8.1 Statistical Properties of es (133)
          • 5.8.2 Hypothesis Testing (134)
          • 5.8.3 Decision Rules (135)
          • 5.8.4 HTI Strategy Under Fixed b (137)
        • 5.9 Summary (137)
        • 5.10 Problems (138)
        • References (140)
  • DKE507_CH06.pdf
    • Power System State Estimation: Theory and Implementation (142)
      • Contents
      • Chapter 6: Robust State Estimation (142)
        • 6.1 Introduction (142)
        • 6.2 Robustness and Breakdown Points (143)
        • 6.3 Outliers and Leverage Points (144)
          • 6.3.1 Concept of Leverage Points (145)
          • 6.3.2 Identification of Leverage Measurements (146)
        • 6.4 M-Estimators (150)
          • 6.4.1 Estimation by Newton's Method (152)
          • 6.4.2 Iteratively Re-weighted Least Squares Estimation (154)
        • 6.5 Least Absolute Value (LAV) Estimation (155)
          • 6.5.1 Linear Regression (156)
          • 6.5.2 LAV Estimation as an LP Problem (156)
          • 6.5.3 Simplex Based Algorithm (160)
          • 6.5.4 Interior Point Algorithm (165)
        • 6.6 Discussion (168)
        • 6.7 Problems (168)
        • References (169)
  • DKE507_CH07.pdf
    • Power System State Estimation: Theory and Implementation (172)
      • Contents
      • Chapter 7: Network Parameter Estimation (172)
        • 7.1 Introduction (172)
        • 7.2 Influence of parameter errors on state estimation results (173)
        • 7.3 Identification of suspicious parameters (178)
        • 7.4 Classification of parameter estimation methods (179)
        • 7.5 Parameter estimation based on residual sensitivity analysis (180)
        • 7.6 Parameter estimation based on state vector augmentation (182)
          • 7.6.1 Solution using conventional normal equations (185)
          • 7.6.2 Solution based on Kalman filter theory (187)
        • 7.7 Parameter estimation based on historical series of data (188)
        • 7.8 Transformer tap estimation (194)
        • 7.9 Observability of network parameters (202)
        • 7.10 Discussion (203)
        • 7.11 Problems (204)
        • References (205)
  • DKE507_CH08.pdf
    • Power System State Estimation: Theory and Implementation (209)
      • Contents
      • Chapter 8: Topology Error Processing (209)
        • 8.1 Introduction (209)
        • 8.2 Types of topology errors (211)
        • 8.3 Detection of topology errors (211)
        • 8.4 Classification of methods for topology error analysis (215)
        • 8.5 Preliminary topology validation (217)
        • 8.6 Branch status errors (218)
          • 8.6.1 Residual analysis (219)
          • 8.6.2 State vector augmentation (223)
        • 8.7 Substation configuration errors (227)
          • 8.7.1 Inclusion of circuit breakers in the network model (228)
          • 8.7.2 WLAV estimator (232)
          • 8.7.3 WLS estimator (235)
        • 8.8 Substation graph and reduced model (239)
        • 8.9 Implicit substation model: state and status estimation (242)
        • 8.10 Observability analysis revisited (251)
        • 8.11 Problems (254)
        • References (256)
  • DKE507_appa.pdf
    • Power System State Estimation: Theory and Implementation (259)
      • Contents
      • Appendix A: Review of Basic Statistics (259)
        • A.1 Random Variables (259)
        • A.2 The Distribution Function ( d. f.), F( x) (259)
        • A.3 The Probability Density Function ( p. d. f), (260)
        • A.4 Continuous Joint Distributions (260)
        • A.5 Independent Random Variables (261)
        • A.6 Conditional Distributions (261)
        • A.7 Expected Value (261)
        • A.8 Variance (262)
        • A.9 Median (262)
        • A.10 Mean Squared Error (262)
        • A.11 Mean Absolute Error (263)
        • A.12 Covariance (263)
        • A.13 Normal Distribution (264)
        • A 14 Standard Normal Distribution (265)
        • A.15 Properties of Normally Distributed Random Variables (267)
        • A.16 Distribution of Sample Mean (268)
        • A.17 Likelihood Function and Maximum Likelihood Estimator (269)
          • A.17.1 Properties of MLE's (269)
        • A. 18 Central Limit Theorem for the Sample Mean (270)
  • DKE507_appb.pdf
    • Power System State Estimation: Theory and Implementation (271)
      • Contents
      • Appendix B: Review of Sparse Linear Equation Solution (271)
        • B.1 Solution by Direct Methods (273)
        • B.2 Elementary Matrices (274)
        • B.3 LU Factorization Using Elementary Matrices (275)
          • B.3.1 Crout's Algorithm (275)
          • B.3.2 Doolittle's Algorithm (277)
          • B.3.3 Factorization of Sparse Symmetric Matrices (278)
          • B.3.4 Ordering Sparse Symmetric Matrices (279)
        • B.4 Factorization Path Graph (280)
        • B.5 Sparse Forward/ Back Substitutions (281)
        • B.6 Solution of Modified Equations (283)
          • B.6.1 Partial Refactorization (285)
          • B.6.2 Compensation (287)
        • B.7 Sparse Inverse (289)
        • B.8 Orthogonal Factorization (291)
        • B.9 Storage and Retrieval of Sparse Matrix Elements (294)
        • B.10 Inserting and/or Deleting Elements in a Linked List (296)
          • B.10.1 Adding a nonzero element (296)
          • B.10.2 Deleting a nonzero element (297)
        • References (298)
  • DKE507_CH09.pdf
    • Power System State Estimation: Theory and Implementation (300)
      • Contents
      • Chapter 9: State Estimation Using Ampere Measurements (300)
        • 9.1 Introduction (300)
        • 9.2 Modeling of Ampere Measurements (302)
        • 9.3 Difficulties in Using Ampere Measurements (307)
        • 9.4 Inequality- Constrained State Estimation (310)
        • 9.5 Heuristic Determination of , P-0 Solution Uniqueness (316)
        • 9.6 Algorithmic Determination of Solution Uniqueness (319)
          • 9.6.1 Procedure based on the residual covariance matrix (320)
          • 9.6.2 Procedure based on the Jacobian matrix (323)
        • 9.7 Identification of Nonuniquely Observable Branches (325)
        • 9.8 Measurement Classification and Bad Data Identification (329)
          • 9.8.1 LS Estimation (330)
          • 9.8.2 LAV Estimation (332)
        • 9.9 Problems (334)
        • References (335)
Loading...