کتابخانه مرکزی دانشگاه صنعتی شریف
    • [نمايش بزرگتر]
    • [نمايش کوچکتر]
  • صفحه 
     از  0
  • [صفحه قبل]
  • [صفحه بعد]
  • [نمایش تمام صفحه]
  • [بستن]
 
Electric distribution systems
Sallam, A. A. (Abdelhay A.).

اطلاعات کتابشناختی

Electric distribution systems
Author :   Sallam, A. A. (Abdelhay A.).
Publisher :   Wiley-IEEE Press,
Pub. Year  :   2010
Subjects :   Electric power distribution.
Call Number :   ‭TK 3001 .S325 2011

جستجو در محتوا

ترتيب

فهرست مطالب

  • ELECTRIC DISTRIBUTION SYSTEMS (5)
    • CONTENTS (7)
    • PREFACE (19)
    • ACKNOWLEDGMENTS (23)
    • PART I: FUNDAMENTAL CONCEPTS (25)
      • CHAPTER 1: MAIN CONCEPTS OF ELECTRIC DISTRIBUTION SYSTEMS (27)
        • 1.1 INTRODUCTION AND BACKGROUND (27)
          • 1.1.1 Power System Arrangements (27)
        • 1.2 DUTIES OF DISTRIBUTION SYSTEM PLANNERS (29)
        • 1.3 FACTORS AFFECTING THE PLANNING PROCESS (33)
          • 1.3.1 Demand Forecasts (33)
          • 1.3.2 Planning Policy (33)
          • 1.3.3 CM (34)
          • 1.3.4 Reliability Planning Standards (35)
          • 1.3.5 Categories of Customer Reliability Level (36)
        • 1.4 PLANNING OBJECTIVES (37)
          • 1.4.1 Load Forecasting (37)
          • 1.4.2 Power Quality (37)
          • 1.4.3 Compliance with Standards (38)
          • 1.4.4 Investments (38)
          • 1.4.5 Distribution Losses (40)
          • 1.4.6 Amount of LOL (41)
        • 1.5 SOLUTIONS FOR MEETING DEMAND FORECASTS (43)
          • 1.5.1 Network Solutions (43)
          • 1.5.2 Non - Network Solutions (43)
        • 1.6 STRUCTURE OF DISTRIBUTION NETWORKS (45)
          • 1.6.1 Distribution Voltage Levels (45)
          • 1.6.2 Distribution System Confi gurations (45)
            • 1.6.2.1 MV Distribution Networks (46)
            • 1.6.2.2 LV Distribution Networks (49)
      • CHAPTER 2: LOAD DEMAND FORECASTING (57)
        • 2.1 INTRODUCTION (57)
        • 2.2 IMPORTANT FACTORS FOR FORECASTS (59)
        • 2.3 FORECASTING METHODOLOGY (59)
          • 2.3.1 Extrapolation Technique (60)
          • 2.3.2 Correlation Technique (60)
          • 2.3.3 Method of Least Squares (62)
          • 2.3.4 STLF Techniques (65)
            • 2.3.4.1 Stochastic Time Series (67)
          • 2.3.5 Medium - and Long - Term Load Forecasting Methods (72)
        • 2.4 SPATIAL LOAD FORECASTING ( SLF ) (74)
          • 2.4.1 Main Aspects of SLF (74)
            • 2.4.1.1 First Aspect (74)
            • 2.4.1.2 Second Aspect (74)
            • 2.4.1.3 Third Aspect (75)
          • 2.4.2 Analysis Requirements (75)
            • 2.4.2.1 Spatial Resolution (75)
            • 2.4.2.2 Time and Peak Load Forecasts (76)
            • 2.4.2.3 Type of Load (76)
            • 2.4.2.4 Sensitivity Analysis (77)
          • 2.4.3 Load, Coincidence, and Diversity Factors ( DFs ) (77)
          • 2.4.4 Measuring and Recording Load Behavior (80)
            • 2.4.4.1 Sampling Methods (80)
            • 2.4.4.2 Sampling Rate (81)
        • 2.5 END - USE MODELING (81)
        • 2.6 SPATIAL LOAD FORECAST METHODS (82)
          • 2.6.1 Trend Methods (83)
            • 2.6.1.1 Polynomial Curve Fit (84)
            • 2.6.1.2 Saturation Growth Curve (S - Curve) (87)
    • PART II: PROTECTION AND DISTRIBUTION SWITCHGEAR (91)
      • CHAPTER 3: EARTHING OF ELECTRIC DISTRIBUTION SYSTEMS (93)
        • 3.1 BASIC OBJECTIVES (93)
        • 3.2 EARTHING ELECTRIC EQUIPMENT (94)
          • 3.2.1 General Means (94)
          • 3.2.2 Substation Earthing (99)
            • 3.2.2.1 Step and Touch Voltage Regulations (99)
            • 3.2.2.2 The Human Factor (101)
            • 3.2.2.3 Measuring and Controlling Earth Resistance (104)
            • 3.2.2.4 Substation Earthing Mats (107)
            • 3.2.2.5 Design of Substation Earthing Mats to Meet the Step and Touch Voltage Regulations (109)
            • 3.2.2.6 Design of Substation Earthing Mats Using Computer Algorithms (111)
        • 3.3 SYSTEM EARTHING (112)
          • 3.3.1 Unearthed Systems (112)
          • 3.3.2 Earthed Systems (113)
          • 3.3.3 Purpose of System Earthing (113)
          • 3.3.4 Definitions [36] (113)
          • 3.3.5 Methods of System Neutral Earthing (115)
          • 3.3.6 Creating Neutral Earthing (117)
        • 3.4 MV EARTHING SYSTEMS (119)
          • 3.4.1 Influence of MV Earthing Systems (121)
          • 3.4.2 MV Earthing Systems Worldwide (123)
        • 3.5 EARTHING SYSTEMS IN LV DISTRIBUTION NETWORKS (123)
          • 3.5.1 IT Earthing System (123)
          • 3.5.2 TT Earthing System (124)
          • 3.5.3 TN Earthing System (124)
          • 3.5.4 LV Earthing Systems Worldwide (126)
            • 3.5.4.1 Public Distribution Systems (126)
            • 3.5.4.2 Earthing Systems of Private LV Networks (127)
      • CHAPTER 4: SHORT - CIRCUIT STUDIES (131)
        • 4.1 INTRODUCTION (131)
        • 4.2 SHORT - CIRCUIT ANALYSIS (133)
          • 4.2.1 Nature of Short - Circuit Currents (134)
            • 4.2.1.1 Case 1 (134)
            • 4.2.1.2 Case 2 (138)
          • 4.2.2 Calculation of Short - Circuit Current (141)
            • 4.2.2.1 Symmetrical Three - Phase Short Circuit (143)
            • 4.2.2.2 Unsymmetrical Short Circuits (157)
            • 4.2.2.3 Sequence - Impedance Networks (161)
            • 4.2.2.4 Line - to - Earth Fault (L - E Fault) (168)
            • 4.2.2.5 Line - to - Line Fault (L - L Fault) (174)
            • 4.2.2.6 Double Line - to - Earth Fault (2L - E Fault) (175)
            • 4.2.2.7 Calculation of Minimum Short - Circuit Current in LV Distributio Networks (179)
      • CHAPTER 5: PROTECTION OF ELECTRIC DISTRIBUTION SYSTEMS (187)
        • 5.1 INTRODUCTION (187)
          • 5.1.1 Protection System Concepts (188)
        • 5.2 TYPES OF RELAY CONSTRUCTION (190)
          • 5.2.1 Electromagnetic Relays (190)
          • 5.2.2 Static Relays (191)
          • 5.2.3 Digital Relays (191)
        • 5.3 OVERCURRENT PROTECTION (195)
          • 5.3.1 Overcurrent Relays (196)
          • 5.3.2 Coordination of Overcurrent Relays (199)
            • 5.3.2.1 Time - Based Coordination (199)
            • 5.3.2.2 Current - Based Coordination (200)
            • 5.3.2.3 Logic Coordination (202)
          • 5.3.3 Earth - Fault Protection (210)
        • 5.4 RECLOSERS, SECTIONALIZERS, AND FUSES (212)
          • 5.4.1 Reclosers (212)
            • 5.4.1.1 Locations of Reclosers Installation (214)
            • 5.4.1.2 Series Reclosers Coordination (215)
          • 5.4.2 Sectionalizers (217)
          • 5.4.3 Fuses (219)
            • 5.4.3.1 Fuse – Fuse Coordination (223)
          • 5.4.4 Coordination of Reclosers, Sectionalizers, and Fuses (223)
        • 5.5 DIRECTIONAL PROTECTION (224)
          • 5.5.1 Directional Overcurrent Relays (225)
          • 5.5.2 Directional Relays Operation (226)
          • 5.5.3 Directional Earth - Fault Protection (229)
        • 5.6 DIFFERENTIAL PROTECTION (229)
          • 5.6.1 Motor Differential Protection (236)
          • 5.6.2 Generator Differential Protection (237)
          • 5.6.3 Transformer Differential Protection (237)
          • 5.6.4 Differential Protection of Buses (239)
          • 5.6.5 Differential Protection of Cables and Lines (240)
        • 5.7 THERMAL PROTECTION (242)
        • 5.8 OVERVOLTAGE PROTECTION (245)
          • 5.8.1 Types of Overvoltages (247)
            • 5.8.1.1 Switching Overvoltages (247)
            • 5.8.1.2 Power - Frequency Overvoltages (250)
            • 5.8.1.3 Lightning Overvoltages (251)
          • 5.8.2 Methods of Overvoltage Protection (253)
            • 5.8.2.1 Insulation Coordination (253)
            • 5.8.2.2 Surge Arresters (255)
            • 5.8.2.3 Primary and Secondary Protection of LV Network (257)
      • CHAPTER 6: DISTRIBUTION SWITCHGEAR (261)
        • 6.1 NEED FOR SWITCHGEAR (261)
        • 6.2 SWITCHGEAR LAYOUT (263)
          • 6.2.1 Environmental Requirements (264)
          • 6.2.2 Types of Switchgear Installations (264)
            • 6.2.2.1 Metal - Enclosed Switchgear (265)
            • 6.2.2.2 Insulation - Enclosed Switchgear (265)
            • 6.2.2.3 Open - Type Switchgear (266)
        • 6.3 DIMENSIONING OF SWITCHGEAR INSTALLATIONS (266)
          • 6.3.1 Dimensioning of Insulation (266)
          • 6.3.2 Insulation Coordination (267)
          • 6.3.3 Dimensioning of Bar Conductors for Mechanical Short - Circuit Strength (267)
          • 6.3.4 Mechanical Short - Circuit Stresses on Cables and Cable Fittings (271)
          • 6.3.5 Dimensioning for Thermal Short - Circuit Strength (271)
          • 6.3.6 Dimensioning for Continuous Current Rating (276)
        • 6.4 CIVIL CONSTRUCTION REQUIREMENTS (277)
          • 6.4.1 Indoor Installations (278)
          • 6.4.2 Outdoor Installations (279)
          • 6.4.3 Transformer Installation (279)
          • 6.4.4 Ventilation of Switchgear Installations (280)
        • 6.5 MV SWITCHGEAR DEVICES (284)
          • 6.5.1 Definitions (284)
          • 6.5.2 Knife Switches (285)
          • 6.5.3 LBSs (285)
          • 6.5.4 Earthing Switches (286)
          • 6.5.5 CBs (287)
            • 6.5.5.1 Principles of Interruption (290)
        • 6.6 LV SWITCHGEAR DEVICES (291)
          • 6.6.1 Isolators (291)
          • 6.6.2 LBS (292)
          • 6.6.3 Contactors (292)
          • 6.6.4 Fuse Switch (292)
          • 6.6.5 LV CBs (294)
            • 6.6.5.1 Description (294)
            • 6.6.5.2 Fundamental Characteristics (295)
            • 6.6.5.3 Selection Criteria (296)
        • 6.7 PROTECTION CLASSES (297)
        • 6.8 SPECIFICATIONS AND IMPLEMENTATION OF EARTHING (297)
        • 6.9 SAFETY AND SECURITY OF INSTALLATIONS (298)
        • 6.10 ASSESSMENT OF SWITCHGEAR (301)
        • 6.11 STEPS FOR INSTALLING SWITCHGEAR (303)
        • 6.12 ARC FLASH HAZARDS (303)
          • 6.12.1 Causes of Arcing Faults (305)
          • 6.12.2 Arc Flash Consequences (305)
          • 6.12.3 Limits of Approach (305)
          • 6.12.4 PPE Hazard Risk Categories (307)
          • 6.12.5 Calculation Methods (308)
            • 6.12.5.1 IEEE Standard 1584 - 2002 (308)
            • 6.12.5.2 NFPA 70E - 2004 (311)
            • 6.12.5.3 Computer Software (312)
        • 6.12.6 Selection of Calculation Method (313)
        • 6.12.7 Mitigation of Arc Flash Hazards (314)
          • 6.12.7.1 Arcing Current Reduction (314)
          • 6.12.7.2 Increasing the Working Distance (314)
          • 6.12.7.3 Reducing the Clearing Time (314)
          • 6.12.7.4 Use of Arc Flash Detecting Relays (315)
    • PART III: POWER QUALITY (317)
      • CHAPTER 7: ELECTRIC POWER QUALITY (319)
        • 7.1 OVERVIEW (319)
        • 7.2 POWER QUALITY PROBLEMS (320)
          • 7.2.1 Typical Power Quality Problems (324)
          • 7.2.2 Case Studies (326)
        • 7.3 COST OF POWER QUALITY (327)
          • 7.3.1 Power Supply Quality (328)
          • 7.3.2 QC (328)
          • 7.3.3 Economic Profit (329)
          • 7.3.4 A Case Study (331)
        • 7.4 SOLUTIONS OF POWER QUALITY PROBLEMS (333)
          • 7.4.1 Examples of Power Quality Devices (334)
            • 7.4.1.1 SPDs (334)
            • 7.4.1.2 BCKGs (336)
            • 7.4.1.3 UPS (337)
            • 7.4.1.4 ITRs (339)
            • 7.4.1.5 ITR Operation (339)
            • 7.4.1.6 Voltage Regulators (VRs) (340)
        • 7.5 SOLUTION CYCLE FOR POWER QUALITY PROBLEMS (340)
      • CHAPTER 8: VOLTAGE VARIATIONS (343)
        • 8.1 VOLTAGE QUALITY (343)
          • 8.1.1 Voltage Drop (343)
          • 8.1.2 Voltage Sags (346)
            • 8.1.2.1 Sources of Voltage Sag (346)
          • 8.1.3 Flicker (349)
          • 8.1.4 Voltage Swells (350)
          • 8.1.5 Transient Overvoltages (350)
            • 8.1.5.1 Impulse Transients (350)
        • 8.2 METHODS OF VOLTAGE DROP REDUCTION (352)
          • 8.2.1 Application of Series Capacitors (352)
            • 8.2.1.1 Introduction (352)
            • 8.2.1.2 Basic Theories (Case No. 1) (352)
            • 8.2.1.3 Reduced Voltage Fluctuations (354)
            • 8.2.1.4 Loss Reduction (354)
            • 8.2.1.5 Illustrative Example (355)
            • 8.2.1.6 Lateral Radial Feeder (356)
          • 8.2.2 Adding New Lines (359)
          • 8.2.3 Regulating the Voltage (361)
          • 8.2.4 Applying Shunt Capacitors (363)
        • 8.3 VOLTAGE SAG CALCULATIONS (369)
          • 8.3.1 Sampling Rate (369)
          • 8.3.2 Magnitude of Voltage Sag (369)
          • 8.3.3 Duration of Voltage Sag (370)
          • 8.3.4 Voltage Sag Phase - Angle Changes (371)
          • 8.3.5 Illustrative Example (371)
        • 8.4 ESTIMATION OF DISTRIBUTION LOSSES (380)
          • 8.4.1 A Top - Down Approach (381)
      • CHAPTER 9: POWER FACTOR IMPROVEMENT (385)
        • 9.1 BACKGROUND (385)
        • 9.2 SHUNT COMPENSATION (390)
        • 9.3 NEED FOR SHUNT COMPENSATION (390)
        • 9.4 AN EXAMPLE (394)
        • 9.5 HOW TO DETERMINE COMPENSATION (395)
      • CHAPTER 10: HARMONICS IN ELECTRIC DISTRIBUTION SYSTEMS (405)
        • 10.1 WHAT ARE HARMONICS? (405)
        • 10.2 SOURCES OF HARMONICS (410)
        • 10.3 DISTURBANCES CAUSED BY HARMONICS (419)
          • 10.3.1 Technical Problems (421)
          • 10.3.2 Economical Problems (423)
        • 10.4 PRINCIPLES OF HARMONIC DISTORTION INDICATIONS AND MEASUREMENT (423)
          • 10.4.1 PF (423)
          • 10.4.2 rms Value (423)
          • 10.4.3 Crest Factor (424)
          • 10.4.4 Power and Harmonics (424)
        • 10.5 FREQUENCY SPECTRUM AND HARMONIC CONTENT (425)
          • 10.5.1 Individual Harmonic Distortion (425)
          • 10.5.2 THD (425)
          • 10.5.3 Relation Between PF and THD (426)
        • 10.6 STANDARDS AND RECOMMENDATIONS (428)
      • CHAPTER 11: HARMONICS EFFECT MITIGATION (431)
        • 11.1 INTRODUCTION (431)
        • 11.2 FIRST CLASS OF SOLUTIONS (431)
          • 11.2.1 Supplying the Loads from Upstream (431)
          • 11.2.2 Grouping the Disturbing Loads (432)
          • 11.2.3 Supplying the Loads from Different Sources (432)
        • 11.3 SECOND CLASS OF SOLUTIONS (433)
          • 11.3.1 Use of Transformers with Special Connections (433)
          • 11.3.2 Use of Inductors (433)
          • 11.3.3 Arrangement of System Earthing (433)
          • 11.3.4 Use of Six - Pulse Drive (434)
        • 11.4 THIRD CLASS OF SOLUTIONS (434)
          • 11.4.1 Passive Filters (434)
          • 11.4.2 AFs (435)
          • 11.4.3 Hybrid Filters (436)
        • 11.5 SELECTION CRITERION (437)
        • 11.6 CASE STUDIES (437)
          • 11.6.1 General (437)
          • 11.6.2 Need for Shunt Capacitors (438)
          • 11.6.3 Effects of Harmonics on PF Capacitors (439)
          • 11.6.4 PF Correction for a Pipe Welding Industry (441)
            • 11.6.4.1 How the AF Works (444)
            • 11.6.4.2 Application of Hybrid Var Compensator ( HVC ) System to Pipe Welding Industry (447)
          • 11.6.5 Crane Applications — Suez Canal Container Terminal ( SCCT ) (447)
            • 11.6.5.1 System Problems (448)
            • 11.6.5.2 Solution (452)
          • 11.6.6 Principles to Specify AFs (453)
            • 11.6.6.1 Sites Concerned (453)
            • 11.6.6.2 Objectives and Distortion Limits (453)
            • 11.6.6.3 System Description (453)
            • 11.6.6.4 Installation Modes (454)
            • 11.6.6.5 Point of Connection (454)
            • 11.6.6.6 Characteristics of AC Source (455)
            • 11.6.6.7 Protection (455)
            • 11.6.6.8 Environmental Conditions (456)
    • PART IV: MANAGEMENT AND MONITORING (457)
      • CHAPTER 12: DEMAND - SIDE MANAGEMENT AND ENERGY EFFICIENCY (459)
        • 12.1 OVERVIEW (459)
        • 12.2 DSM (461)
        • 12.3 NEEDS TO APPLY DSM (462)
        • 12.4 MEANS OF DSM PROGRAMS (463)
        • 12.5 INTERNATIONAL EXPERIENCE WITH DSM (465)
        • 12.6 POTENTIAL FOR DSM APPLICATION (466)
          • 12.6.1 Peak Demand Savings (467)
          • 12.6.2 Energy Consumption Savings (467)
        • 12.7 THE DSM PLANNING PROCESS (468)
        • 12.8 EXPECTED BENEFITS OF MANAGING DEMAND (473)
        • 12.9 ENERGY EFFICIENCY (473)
        • 12.10 SCENARIOS USED FOR ENERGY - EFFICIENCY APPLICATION (474)
        • 12.11 ECONOMIC BENEFITS OF ENERGY EFFICIENCY (474)
        • 12.12 APPLICATION OF EFFICIENT TECHNOLOGY (474)
          • 12.12.1 Lighting (474)
          • 12.12.2 Motors (481)
          • 12.12.3 Heating (484)
          • 12.12.4 Pumps (486)
            • 12.12.4.1 Pump Characteristics (487)
            • 12.12.4.2 Flow Rate Control (489)
            • 12.12.4.3 An Illustrative Example (491)
      • CHAPTER 13: SCADA SYSTEMS AND SMART GRID VISION (493)
        • 13.1 INTRODUCTION (493)
        • 13.2 DEFINITIONS (497)
          • 13.2.1 A SCADA System (497)
          • 13.2.2 Telemetry (497)
          • 13.2.3 Data Acquisition (498)
        • 13.3 SCADA COMPONENTS (498)
          • 13.3.1 Instrumentation (First Component) (498)
          • 13.3.2 Remote Stations (Second Component) (499)
          • 13.3.3 Communication Networks (Third Component) (499)
          • 13.3.4 MTU (Fourth Component) (502)
        • 13.4 SCADA SYSTEMS ARCHITECTURES (502)
          • 13.4.1 Hardware (502)
          • 13.4.2 Software (504)
        • 13.5 SCADA APPLICATIONS (509)
          • 13.5.1 Substation Automation (509)
          • 13.5.2 Commercial Office Buildings (511)
          • 13.5.3 Power Factor Correction System (511)
        • 13.6 SMART GRID VISION (514)
          • 13.6.1 Smart Grid Overview (514)
          • 13.6.2 Smart Grid Concept (515)
          • 13.6.3 Driving Factors (517)
    • PART V: DISTRIBUTED GENERATION (519)
      • CHAPTER 14: DISTRIBUTED GENERATION (521)
        • 14.1 POWER SYSTEMS AND DISTRIBUTED GENERATION ( DG ) (521)
        • 14.2 PERFORMANCE OF DISTRIBUTED GENERATORS (526)
          • 14.2.1 Microturbines (526)
          • 14.2.2 Wind Turbines (529)
          • 14.2.3 Hydroelectric Pumped Storage Systems (533)
          • 14.2.4 Photovoltaic ( PV ) Devices (534)
          • 14.2.5 Asynchronous Generators (538)
          • 14.2.6 Synchronous Generators (540)
        • 14.3 CASE STUDY (541)
          • 14.3.1 Distribution Generation Drivers (543)
          • 14.3.2 Potential Benefits of DG on Increased Electric System Reliability (544)
            • 14.3.2.1 Reliability Indices (545)
            • 14.3.2.2 DG and Electric System Reliability (548)
          • 14.3.3 Potential Benefits of DG in Reducing Peak Power Requirements (550)
            • 14.3.3.1 Load Diversity and Congestion (551)
            • 14.3.3.2 Potential for DG to Reduce Peak Load (553)
          • 14.3.4 Potential Benefits of DG from Ancillary Services (553)
            • 14.3.4.1 Potential Benefits of the Provision of Reactive Power or Volt - Ampere Reactive (Voltage Support) (554)
            • 14.3.4.2 Simulated DG Reactive Power Effects (556)
            • 14.3.4.3 Spinning Reserve, Supplemental Reserve, and Black Start (557)
            • 14.3.4.4 Basis for Ancillary Services Valuations (558)
          • 14.3.5 Value of Power Quality Improvements (558)
          • 14.3.6 Technical Specifications of DG and Utility Grid Interconnection (559)
          • 14.3.7 Planning Process (560)
    • REFERENCES (561)
    • INDEX (573)
Loading...