برای استفاده از امکانات سیستم، گزینه جاوا اسکریپت در مرورگر شما باید فعال باشد
صفحه
از
0
Electric distribution systems
Sallam, A. A. (Abdelhay A.).
اطلاعات کتابشناختی
Electric distribution systems
Author :
Sallam, A. A. (Abdelhay A.).
Publisher :
Wiley-IEEE Press,
Pub. Year :
2010
Subjects :
Electric power distribution.
Call Number :
TK 3001 .S325 2011
جستجو در محتوا
ترتيب
شماره صفحه
امتياز صفحه
فهرست مطالب
ELECTRIC DISTRIBUTION SYSTEMS
(5)
CONTENTS
(7)
PREFACE
(19)
ACKNOWLEDGMENTS
(23)
PART I: FUNDAMENTAL CONCEPTS
(25)
CHAPTER 1: MAIN CONCEPTS OF ELECTRIC DISTRIBUTION SYSTEMS
(27)
1.1 INTRODUCTION AND BACKGROUND
(27)
1.1.1 Power System Arrangements
(27)
1.2 DUTIES OF DISTRIBUTION SYSTEM PLANNERS
(29)
1.3 FACTORS AFFECTING THE PLANNING PROCESS
(33)
1.3.1 Demand Forecasts
(33)
1.3.2 Planning Policy
(33)
1.3.3 CM
(34)
1.3.4 Reliability Planning Standards
(35)
1.3.5 Categories of Customer Reliability Level
(36)
1.4 PLANNING OBJECTIVES
(37)
1.4.1 Load Forecasting
(37)
1.4.2 Power Quality
(37)
1.4.3 Compliance with Standards
(38)
1.4.4 Investments
(38)
1.4.5 Distribution Losses
(40)
1.4.6 Amount of LOL
(41)
1.5 SOLUTIONS FOR MEETING DEMAND FORECASTS
(43)
1.5.1 Network Solutions
(43)
1.5.2 Non - Network Solutions
(43)
1.6 STRUCTURE OF DISTRIBUTION NETWORKS
(45)
1.6.1 Distribution Voltage Levels
(45)
1.6.2 Distribution System Confi gurations
(45)
1.6.2.1 MV Distribution Networks
(46)
1.6.2.2 LV Distribution Networks
(49)
CHAPTER 2: LOAD DEMAND FORECASTING
(57)
2.1 INTRODUCTION
(57)
2.2 IMPORTANT FACTORS FOR FORECASTS
(59)
2.3 FORECASTING METHODOLOGY
(59)
2.3.1 Extrapolation Technique
(60)
2.3.2 Correlation Technique
(60)
2.3.3 Method of Least Squares
(62)
2.3.4 STLF Techniques
(65)
2.3.4.1 Stochastic Time Series
(67)
2.3.5 Medium - and Long - Term Load Forecasting Methods
(72)
2.4 SPATIAL LOAD FORECASTING ( SLF )
(74)
2.4.1 Main Aspects of SLF
(74)
2.4.1.1 First Aspect
(74)
2.4.1.2 Second Aspect
(74)
2.4.1.3 Third Aspect
(75)
2.4.2 Analysis Requirements
(75)
2.4.2.1 Spatial Resolution
(75)
2.4.2.2 Time and Peak Load Forecasts
(76)
2.4.2.3 Type of Load
(76)
2.4.2.4 Sensitivity Analysis
(77)
2.4.3 Load, Coincidence, and Diversity Factors ( DFs )
(77)
2.4.4 Measuring and Recording Load Behavior
(80)
2.4.4.1 Sampling Methods
(80)
2.4.4.2 Sampling Rate
(81)
2.5 END - USE MODELING
(81)
2.6 SPATIAL LOAD FORECAST METHODS
(82)
2.6.1 Trend Methods
(83)
2.6.1.1 Polynomial Curve Fit
(84)
2.6.1.2 Saturation Growth Curve (S - Curve)
(87)
PART II: PROTECTION AND DISTRIBUTION SWITCHGEAR
(91)
CHAPTER 3: EARTHING OF ELECTRIC DISTRIBUTION SYSTEMS
(93)
3.1 BASIC OBJECTIVES
(93)
3.2 EARTHING ELECTRIC EQUIPMENT
(94)
3.2.1 General Means
(94)
3.2.2 Substation Earthing
(99)
3.2.2.1 Step and Touch Voltage Regulations
(99)
3.2.2.2 The Human Factor
(101)
3.2.2.3 Measuring and Controlling Earth Resistance
(104)
3.2.2.4 Substation Earthing Mats
(107)
3.2.2.5 Design of Substation Earthing Mats to Meet the Step and Touch Voltage Regulations
(109)
3.2.2.6 Design of Substation Earthing Mats Using Computer Algorithms
(111)
3.3 SYSTEM EARTHING
(112)
3.3.1 Unearthed Systems
(112)
3.3.2 Earthed Systems
(113)
3.3.3 Purpose of System Earthing
(113)
3.3.4 Definitions [36]
(113)
3.3.5 Methods of System Neutral Earthing
(115)
3.3.6 Creating Neutral Earthing
(117)
3.4 MV EARTHING SYSTEMS
(119)
3.4.1 Influence of MV Earthing Systems
(121)
3.4.2 MV Earthing Systems Worldwide
(123)
3.5 EARTHING SYSTEMS IN LV DISTRIBUTION NETWORKS
(123)
3.5.1 IT Earthing System
(123)
3.5.2 TT Earthing System
(124)
3.5.3 TN Earthing System
(124)
3.5.4 LV Earthing Systems Worldwide
(126)
3.5.4.1 Public Distribution Systems
(126)
3.5.4.2 Earthing Systems of Private LV Networks
(127)
CHAPTER 4: SHORT - CIRCUIT STUDIES
(131)
4.1 INTRODUCTION
(131)
4.2 SHORT - CIRCUIT ANALYSIS
(133)
4.2.1 Nature of Short - Circuit Currents
(134)
4.2.1.1 Case 1
(134)
4.2.1.2 Case 2
(138)
4.2.2 Calculation of Short - Circuit Current
(141)
4.2.2.1 Symmetrical Three - Phase Short Circuit
(143)
4.2.2.2 Unsymmetrical Short Circuits
(157)
4.2.2.3 Sequence - Impedance Networks
(161)
4.2.2.4 Line - to - Earth Fault (L - E Fault)
(168)
4.2.2.5 Line - to - Line Fault (L - L Fault)
(174)
4.2.2.6 Double Line - to - Earth Fault (2L - E Fault)
(175)
4.2.2.7 Calculation of Minimum Short - Circuit Current in LV Distributio Networks
(179)
CHAPTER 5: PROTECTION OF ELECTRIC DISTRIBUTION SYSTEMS
(187)
5.1 INTRODUCTION
(187)
5.1.1 Protection System Concepts
(188)
5.2 TYPES OF RELAY CONSTRUCTION
(190)
5.2.1 Electromagnetic Relays
(190)
5.2.2 Static Relays
(191)
5.2.3 Digital Relays
(191)
5.3 OVERCURRENT PROTECTION
(195)
5.3.1 Overcurrent Relays
(196)
5.3.2 Coordination of Overcurrent Relays
(199)
5.3.2.1 Time - Based Coordination
(199)
5.3.2.2 Current - Based Coordination
(200)
5.3.2.3 Logic Coordination
(202)
5.3.3 Earth - Fault Protection
(210)
5.4 RECLOSERS, SECTIONALIZERS, AND FUSES
(212)
5.4.1 Reclosers
(212)
5.4.1.1 Locations of Reclosers Installation
(214)
5.4.1.2 Series Reclosers Coordination
(215)
5.4.2 Sectionalizers
(217)
5.4.3 Fuses
(219)
5.4.3.1 Fuse – Fuse Coordination
(223)
5.4.4 Coordination of Reclosers, Sectionalizers, and Fuses
(223)
5.5 DIRECTIONAL PROTECTION
(224)
5.5.1 Directional Overcurrent Relays
(225)
5.5.2 Directional Relays Operation
(226)
5.5.3 Directional Earth - Fault Protection
(229)
5.6 DIFFERENTIAL PROTECTION
(229)
5.6.1 Motor Differential Protection
(236)
5.6.2 Generator Differential Protection
(237)
5.6.3 Transformer Differential Protection
(237)
5.6.4 Differential Protection of Buses
(239)
5.6.5 Differential Protection of Cables and Lines
(240)
5.7 THERMAL PROTECTION
(242)
5.8 OVERVOLTAGE PROTECTION
(245)
5.8.1 Types of Overvoltages
(247)
5.8.1.1 Switching Overvoltages
(247)
5.8.1.2 Power - Frequency Overvoltages
(250)
5.8.1.3 Lightning Overvoltages
(251)
5.8.2 Methods of Overvoltage Protection
(253)
5.8.2.1 Insulation Coordination
(253)
5.8.2.2 Surge Arresters
(255)
5.8.2.3 Primary and Secondary Protection of LV Network
(257)
CHAPTER 6: DISTRIBUTION SWITCHGEAR
(261)
6.1 NEED FOR SWITCHGEAR
(261)
6.2 SWITCHGEAR LAYOUT
(263)
6.2.1 Environmental Requirements
(264)
6.2.2 Types of Switchgear Installations
(264)
6.2.2.1 Metal - Enclosed Switchgear
(265)
6.2.2.2 Insulation - Enclosed Switchgear
(265)
6.2.2.3 Open - Type Switchgear
(266)
6.3 DIMENSIONING OF SWITCHGEAR INSTALLATIONS
(266)
6.3.1 Dimensioning of Insulation
(266)
6.3.2 Insulation Coordination
(267)
6.3.3 Dimensioning of Bar Conductors for Mechanical Short - Circuit Strength
(267)
6.3.4 Mechanical Short - Circuit Stresses on Cables and Cable Fittings
(271)
6.3.5 Dimensioning for Thermal Short - Circuit Strength
(271)
6.3.6 Dimensioning for Continuous Current Rating
(276)
6.4 CIVIL CONSTRUCTION REQUIREMENTS
(277)
6.4.1 Indoor Installations
(278)
6.4.2 Outdoor Installations
(279)
6.4.3 Transformer Installation
(279)
6.4.4 Ventilation of Switchgear Installations
(280)
6.5 MV SWITCHGEAR DEVICES
(284)
6.5.1 Definitions
(284)
6.5.2 Knife Switches
(285)
6.5.3 LBSs
(285)
6.5.4 Earthing Switches
(286)
6.5.5 CBs
(287)
6.5.5.1 Principles of Interruption
(290)
6.6 LV SWITCHGEAR DEVICES
(291)
6.6.1 Isolators
(291)
6.6.2 LBS
(292)
6.6.3 Contactors
(292)
6.6.4 Fuse Switch
(292)
6.6.5 LV CBs
(294)
6.6.5.1 Description
(294)
6.6.5.2 Fundamental Characteristics
(295)
6.6.5.3 Selection Criteria
(296)
6.7 PROTECTION CLASSES
(297)
6.8 SPECIFICATIONS AND IMPLEMENTATION OF EARTHING
(297)
6.9 SAFETY AND SECURITY OF INSTALLATIONS
(298)
6.10 ASSESSMENT OF SWITCHGEAR
(301)
6.11 STEPS FOR INSTALLING SWITCHGEAR
(303)
6.12 ARC FLASH HAZARDS
(303)
6.12.1 Causes of Arcing Faults
(305)
6.12.2 Arc Flash Consequences
(305)
6.12.3 Limits of Approach
(305)
6.12.4 PPE Hazard Risk Categories
(307)
6.12.5 Calculation Methods
(308)
6.12.5.1 IEEE Standard 1584 - 2002
(308)
6.12.5.2 NFPA 70E - 2004
(311)
6.12.5.3 Computer Software
(312)
6.12.6 Selection of Calculation Method
(313)
6.12.7 Mitigation of Arc Flash Hazards
(314)
6.12.7.1 Arcing Current Reduction
(314)
6.12.7.2 Increasing the Working Distance
(314)
6.12.7.3 Reducing the Clearing Time
(314)
6.12.7.4 Use of Arc Flash Detecting Relays
(315)
PART III: POWER QUALITY
(317)
CHAPTER 7: ELECTRIC POWER QUALITY
(319)
7.1 OVERVIEW
(319)
7.2 POWER QUALITY PROBLEMS
(320)
7.2.1 Typical Power Quality Problems
(324)
7.2.2 Case Studies
(326)
7.3 COST OF POWER QUALITY
(327)
7.3.1 Power Supply Quality
(328)
7.3.2 QC
(328)
7.3.3 Economic Profit
(329)
7.3.4 A Case Study
(331)
7.4 SOLUTIONS OF POWER QUALITY PROBLEMS
(333)
7.4.1 Examples of Power Quality Devices
(334)
7.4.1.1 SPDs
(334)
7.4.1.2 BCKGs
(336)
7.4.1.3 UPS
(337)
7.4.1.4 ITRs
(339)
7.4.1.5 ITR Operation
(339)
7.4.1.6 Voltage Regulators (VRs)
(340)
7.5 SOLUTION CYCLE FOR POWER QUALITY PROBLEMS
(340)
CHAPTER 8: VOLTAGE VARIATIONS
(343)
8.1 VOLTAGE QUALITY
(343)
8.1.1 Voltage Drop
(343)
8.1.2 Voltage Sags
(346)
8.1.2.1 Sources of Voltage Sag
(346)
8.1.3 Flicker
(349)
8.1.4 Voltage Swells
(350)
8.1.5 Transient Overvoltages
(350)
8.1.5.1 Impulse Transients
(350)
8.2 METHODS OF VOLTAGE DROP REDUCTION
(352)
8.2.1 Application of Series Capacitors
(352)
8.2.1.1 Introduction
(352)
8.2.1.2 Basic Theories (Case No. 1)
(352)
8.2.1.3 Reduced Voltage Fluctuations
(354)
8.2.1.4 Loss Reduction
(354)
8.2.1.5 Illustrative Example
(355)
8.2.1.6 Lateral Radial Feeder
(356)
8.2.2 Adding New Lines
(359)
8.2.3 Regulating the Voltage
(361)
8.2.4 Applying Shunt Capacitors
(363)
8.3 VOLTAGE SAG CALCULATIONS
(369)
8.3.1 Sampling Rate
(369)
8.3.2 Magnitude of Voltage Sag
(369)
8.3.3 Duration of Voltage Sag
(370)
8.3.4 Voltage Sag Phase - Angle Changes
(371)
8.3.5 Illustrative Example
(371)
8.4 ESTIMATION OF DISTRIBUTION LOSSES
(380)
8.4.1 A Top - Down Approach
(381)
CHAPTER 9: POWER FACTOR IMPROVEMENT
(385)
9.1 BACKGROUND
(385)
9.2 SHUNT COMPENSATION
(390)
9.3 NEED FOR SHUNT COMPENSATION
(390)
9.4 AN EXAMPLE
(394)
9.5 HOW TO DETERMINE COMPENSATION
(395)
CHAPTER 10: HARMONICS IN ELECTRIC DISTRIBUTION SYSTEMS
(405)
10.1 WHAT ARE HARMONICS?
(405)
10.2 SOURCES OF HARMONICS
(410)
10.3 DISTURBANCES CAUSED BY HARMONICS
(419)
10.3.1 Technical Problems
(421)
10.3.2 Economical Problems
(423)
10.4 PRINCIPLES OF HARMONIC DISTORTION INDICATIONS AND MEASUREMENT
(423)
10.4.1 PF
(423)
10.4.2 rms Value
(423)
10.4.3 Crest Factor
(424)
10.4.4 Power and Harmonics
(424)
10.5 FREQUENCY SPECTRUM AND HARMONIC CONTENT
(425)
10.5.1 Individual Harmonic Distortion
(425)
10.5.2 THD
(425)
10.5.3 Relation Between PF and THD
(426)
10.6 STANDARDS AND RECOMMENDATIONS
(428)
CHAPTER 11: HARMONICS EFFECT MITIGATION
(431)
11.1 INTRODUCTION
(431)
11.2 FIRST CLASS OF SOLUTIONS
(431)
11.2.1 Supplying the Loads from Upstream
(431)
11.2.2 Grouping the Disturbing Loads
(432)
11.2.3 Supplying the Loads from Different Sources
(432)
11.3 SECOND CLASS OF SOLUTIONS
(433)
11.3.1 Use of Transformers with Special Connections
(433)
11.3.2 Use of Inductors
(433)
11.3.3 Arrangement of System Earthing
(433)
11.3.4 Use of Six - Pulse Drive
(434)
11.4 THIRD CLASS OF SOLUTIONS
(434)
11.4.1 Passive Filters
(434)
11.4.2 AFs
(435)
11.4.3 Hybrid Filters
(436)
11.5 SELECTION CRITERION
(437)
11.6 CASE STUDIES
(437)
11.6.1 General
(437)
11.6.2 Need for Shunt Capacitors
(438)
11.6.3 Effects of Harmonics on PF Capacitors
(439)
11.6.4 PF Correction for a Pipe Welding Industry
(441)
11.6.4.1 How the AF Works
(444)
11.6.4.2 Application of Hybrid Var Compensator ( HVC ) System to Pipe Welding Industry
(447)
11.6.5 Crane Applications — Suez Canal Container Terminal ( SCCT )
(447)
11.6.5.1 System Problems
(448)
11.6.5.2 Solution
(452)
11.6.6 Principles to Specify AFs
(453)
11.6.6.1 Sites Concerned
(453)
11.6.6.2 Objectives and Distortion Limits
(453)
11.6.6.3 System Description
(453)
11.6.6.4 Installation Modes
(454)
11.6.6.5 Point of Connection
(454)
11.6.6.6 Characteristics of AC Source
(455)
11.6.6.7 Protection
(455)
11.6.6.8 Environmental Conditions
(456)
PART IV: MANAGEMENT AND MONITORING
(457)
CHAPTER 12: DEMAND - SIDE MANAGEMENT AND ENERGY EFFICIENCY
(459)
12.1 OVERVIEW
(459)
12.2 DSM
(461)
12.3 NEEDS TO APPLY DSM
(462)
12.4 MEANS OF DSM PROGRAMS
(463)
12.5 INTERNATIONAL EXPERIENCE WITH DSM
(465)
12.6 POTENTIAL FOR DSM APPLICATION
(466)
12.6.1 Peak Demand Savings
(467)
12.6.2 Energy Consumption Savings
(467)
12.7 THE DSM PLANNING PROCESS
(468)
12.8 EXPECTED BENEFITS OF MANAGING DEMAND
(473)
12.9 ENERGY EFFICIENCY
(473)
12.10 SCENARIOS USED FOR ENERGY - EFFICIENCY APPLICATION
(474)
12.11 ECONOMIC BENEFITS OF ENERGY EFFICIENCY
(474)
12.12 APPLICATION OF EFFICIENT TECHNOLOGY
(474)
12.12.1 Lighting
(474)
12.12.2 Motors
(481)
12.12.3 Heating
(484)
12.12.4 Pumps
(486)
12.12.4.1 Pump Characteristics
(487)
12.12.4.2 Flow Rate Control
(489)
12.12.4.3 An Illustrative Example
(491)
CHAPTER 13: SCADA SYSTEMS AND SMART GRID VISION
(493)
13.1 INTRODUCTION
(493)
13.2 DEFINITIONS
(497)
13.2.1 A SCADA System
(497)
13.2.2 Telemetry
(497)
13.2.3 Data Acquisition
(498)
13.3 SCADA COMPONENTS
(498)
13.3.1 Instrumentation (First Component)
(498)
13.3.2 Remote Stations (Second Component)
(499)
13.3.3 Communication Networks (Third Component)
(499)
13.3.4 MTU (Fourth Component)
(502)
13.4 SCADA SYSTEMS ARCHITECTURES
(502)
13.4.1 Hardware
(502)
13.4.2 Software
(504)
13.5 SCADA APPLICATIONS
(509)
13.5.1 Substation Automation
(509)
13.5.2 Commercial Office Buildings
(511)
13.5.3 Power Factor Correction System
(511)
13.6 SMART GRID VISION
(514)
13.6.1 Smart Grid Overview
(514)
13.6.2 Smart Grid Concept
(515)
13.6.3 Driving Factors
(517)
PART V: DISTRIBUTED GENERATION
(519)
CHAPTER 14: DISTRIBUTED GENERATION
(521)
14.1 POWER SYSTEMS AND DISTRIBUTED GENERATION ( DG )
(521)
14.2 PERFORMANCE OF DISTRIBUTED GENERATORS
(526)
14.2.1 Microturbines
(526)
14.2.2 Wind Turbines
(529)
14.2.3 Hydroelectric Pumped Storage Systems
(533)
14.2.4 Photovoltaic ( PV ) Devices
(534)
14.2.5 Asynchronous Generators
(538)
14.2.6 Synchronous Generators
(540)
14.3 CASE STUDY
(541)
14.3.1 Distribution Generation Drivers
(543)
14.3.2 Potential Benefits of DG on Increased Electric System Reliability
(544)
14.3.2.1 Reliability Indices
(545)
14.3.2.2 DG and Electric System Reliability
(548)
14.3.3 Potential Benefits of DG in Reducing Peak Power Requirements
(550)
14.3.3.1 Load Diversity and Congestion
(551)
14.3.3.2 Potential for DG to Reduce Peak Load
(553)
14.3.4 Potential Benefits of DG from Ancillary Services
(553)
14.3.4.1 Potential Benefits of the Provision of Reactive Power or Volt - Ampere Reactive (Voltage Support)
(554)
14.3.4.2 Simulated DG Reactive Power Effects
(556)
14.3.4.3 Spinning Reserve, Supplemental Reserve, and Black Start
(557)
14.3.4.4 Basis for Ancillary Services Valuations
(558)
14.3.5 Value of Power Quality Improvements
(558)
14.3.6 Technical Specifications of DG and Utility Grid Interconnection
(559)
14.3.7 Planning Process
(560)
REFERENCES
(561)
INDEX
(573)