برای استفاده از امکانات سیستم، گزینه جاوا اسکریپت در مرورگر شما باید فعال باشد
صفحه
از
0
Biomaterials fabrication and processing handbook
اطلاعات کتابشناختی
Biomaterials fabrication and processing handbook
Author :
Publisher :
CRC Press/Taylor & Francis,
Pub. Year :
2008
Subjects :
Biomedical materials. Biomedical engineering. Biocompatible Materials. Biosensing...
Call Number :
R 857 .M3 .B5696 2008
جستجو در محتوا
ترتيب
شماره صفحه
امتياز صفحه
فهرست مطالب
Cover Page
(1)
Title: Biomaterials Fabrication and Processing HANDBOOK
(4)
ISBN 0849379733
(5)
Contents (with page links)
(6)
Preface
(10)
Editors
(12)
Contributors
(14)
Part I: Tissue Engineering Scaffold Materials
(18)
1 Inorganic and Composite Bioactive Scaffolds for Bone Tissue Engineering
(20)
1.1 INTRODUCTION
(21)
1.2 DESIGN OF 3-D SCAFFOLDS
(21)
1.3 SCAFFOLD MATERIALS FOR BONE TISSUE ENGINEERING
(23)
1.3.1 BIOCERAMICS: CALCIUM PHOSPHATES
(23)
1.3.2 BIOCERAMICS: BIOACTIVE SILICATE GLASSES
(25)
1.3.3 BIOCERAMICS: GLASS-CERAMICS
(27)
1.3.4 NATURALLY OCCURRING BIOPOLYMERS
(28)
1.3.5 SYNTHETIC POLYMERS
(29)
1.3.6 BIOCOMPOSITES
(33)
1.3.7 SUMMARY
(35)
1.4 FABRICATION OF TISSUE-ENGINEERING SCAFFOLDS
(36)
1.4.1 FABRICATION OF INORGANIC SCAFFOLDS
(36)
1.4.2 FABRICATION OF COMPOSITE SCAFFOLDS
(45)
1.5 SURFACE FUNCTIONALIZATION
(49)
1.5.1 PROTEIN ADSORPTION
(49)
1.5.2 SILANE-MODIFIED SURFACES (SILANIZATION TECHNIQUE)
(49)
1.5.3 TOPOGRAPHY (ROUGHNESS) MODIFICATION
(50)
1.5.4 POLYMER COATINGS
(50)
1.6 CONCLUSIONS
(50)
REFERENCES
(51)
2 Design, Fabrication, and Characterization of Scaffolds via Solid Free-Form Fabrication Techniques
(62)
2.1 INTRODUCTION
(62)
2.1.1 SCAFFOLD-BASED TISSUE ENGINEERING
(63)
2.2 SCAFFOLD DESIGN
(67)
2.2.1 INTRODUCTION
(67)
2.2.2 MORPHOLOGY/ARCHITECTURE
(68)
2.3 SOLID FREE-FORM FABRICATION
(70)
2.3.1 INTRODUCTION
(70)
2.3.2 THREE-DIMENSIONAL PRINTING
(73)
2.3.3 SYSTEMS BASED ON EXTRUSION/DIRECT WRITING
(74)
2.4 FUTURE DIRECTIONS
(79)
2.4.1 INTRODUCTION
(79)
2.4.2 CELL/ORGAN PRINTING
(80)
2.4.3 ROBOT-ASSISTED CONSTRUCT FABRICATION
(82)
2.5 CONCLUSIONS
(82)
REFERENCES
(83)
3 Control and Monitoring of Scaffold Architecture for Tissue Engineering
(86)
3.1 INTRODUCTION
(87)
3.2 REQUISITES FOR ENGINEERING TISSUES
(87)
3.3 SCAFFOLDS FOR TISSUE ENGINEERING
(88)
3.3.1 MATERIALS
(88)
3.3.2 PROCESSING TECHNIQUES TO CONTROL THE SCAFFOLDS’ ARCHITECTURE
(89)
3.4 MONITORING SCAFFOLDS’ ARCHITECTURE
(90)
3.4.1 MICROSCOPY
(91)
3.4.2 MICROCOMPUTED TOMOGRAPHY
(93)
3.4.3 OPTICAL COHERENCE TOMOGRAPHY
(94)
3.5 CONTROL AND MONITORING OF SCAFFOLD ARCHITECTURE FOR TISSUE ENGINEERING—A CASE STUDY
(95)
3.5.1 DEVELOPMENT OF NEW TECHNIQUES TO TAILOR SCAFFOLD ARCHITECTURE
(95)
3.5.2 MONITORING THE SCAFFOLDS’ ARCHITECTURE
(96)
3.5.3 DISCUSSION
(100)
3.6 FINAL REMARKS
(105)
ACKNOWLEDGMENTS
(105)
REFERENCES
(105)
4 Rapid Prototyping Methods for Tissue Engineering Applications
(112)
4.1 INTRODUCTION
(112)
4.2 MICROFABRICATION OF THREE-DIMENSIONAL STRUCTURES: RAPID PROTOTYPING
(113)
4.3 MATERIALS USED FOR TISSUE ENGINEERING SCAFFOLDS
(115)
4.4 RESOLUTION AND RESOLUTION/TIME OF MANUFACTURE RATIO AND GEOMETRY
(116)
4.5 FLUID-BASED RP MICROFABRICATION
(117)
4.5.1 PRESSURE-ASSISTED MICROSYRINGE SYSTEM
(118)
4.5.2 FUSED DEPOSITION MODELING
(119)
4.5.3 ORGAN PRINTING
(120)
4.6 PRINTING HEAD AND POWDER-BASED MICROFABRICATION
(121)
4.6.1 MEMBRANE LAMINATION
(121)
4.6.2 THREE-DIMENSIONAL PRINTING
(122)
4.6.3 LASER SINTERING
(123)
4.6.4 PHOTOPOLYMERIZATION
(124)
4.7 OTHER RP METHODS
(124)
4.7.1 SACRIFICIAL MOLDS
(124)
4.7.2 ELECTROSPINNING
(125)
4.8 INTEGRATION OF RP METHODS
(127)
4.9 COMMERCIAL RP SYSTEMS FOR TISSUE ENGINEERING SCAFFOLDS
(127)
4.10 DISCUSSION: LIMITATIONS AND CRITIQUES
(128)
4.11 CONCLUSION
(129)
REFERENCES
(130)
5 Design and Fabrication Principles of Electrospinning of Scaffolds
(132)
5.1 BACKGROUND
(132)
5.1.1 BASIC PRINCIPLES OF SCAFFOLD-BASED TISSUE ENGINEERING
(133)
5.2 ELECTROSPINNING
(134)
5.2.1 INTRODUCTION
(134)
5.2.2 ELECTROSPINNING OF NATURAL POLYMERS
(141)
5.2.3 ELECTROSPINNING OF SYNTHETIC POLYMERS
(142)
5.3 PHYSICAL CHARACTERIZATION OF ELECTROSPUN SCAFFOLDS
(144)
5.3.1 MEASURING POROSITY, SURFACE ROUGHNESS, AND SPECIFIC SURFACE ENERGY OF SCAFFOLDS
(144)
5.3.2 MECHANICAL TESTING
(148)
5.4 TISSUE ENGINEERING APPLICATIONS BY USING ELECTROSPUN SCAFFOLDS
(149)
5.4.1 BONE TISSUE ENGINEERING
(149)
5.4.2 CARTILAGE TISSUE ENGINEERING
(150)
5.4.3 VASCULAR TISSUE ENGINEERING
(151)
5.4.4 NEURAL TISSUE ENGINEERING
(152)
5.4.5 ELECTROSPINNING OF CELLS
(153)
5.5 CONCLUSION
(153)
REFERENCES
(154)
Part II: Drug Delivery Systems
(158)
6 Nanoparticles in Cancer Drug Delivery Systems
(160)
6.1 INTRODUCTION
(161)
6.2 CHEMOTHERAPY
(161)
6.2.1 TUMOR TISSUES
(161)
6.2.2 PROBLEMS OF CHEMOTHERAPY
(162)
6.3 NANOPARTICLES IN CANCER THERAPY
(162)
6.3.1 PARTICULATE DRUG CARRIERS
(162)
6.3.2 LIPOSOMES
(164)
6.3.3 POLYMERIC NANOPARTICLES
(165)
6.3.4 OTHER NANOSTRUCTURES
(167)
6.4 IN VIVO BIODISTRIBUTION
(169)
6.4.1 BIODISTRIBUTION OF PARTICULATE DRUG CARRIERS
(169)
6.4.2 PHYSICOCHEMICAL FACTORS INFLUENCING BIODISTRIBUTION OF PARTICULATE DRUG CARRIERS
(170)
6.4.3 DESIGN OF LONG-CIRCULATING NANOPARTICLES: PEO-MODIFIED NANOPARTICLES
(171)
6.5 TARGETED DRUG DELIVERY FOR CHEMOTHERAPY
(173)
6.5.1 DRUG TARGETING
(173)
6.5.2 PASSIVE TARGETING
(173)
6.5.3 ACTIVE TARGETING
(173)
6.5.4 IN VIVO STUDIES WITH NANOPARTICULATES FOR TARGETED CHEMOTHERAPY
(180)
6.6 CONCLUSIONS
(181)
REFERENCES
(181)
7 Polymeric Nano/Microparticles for Oral Delivery of Proteins and Peptides
(188)
7.1 INTRODUCTION
(188)
7.2 BARRIERS TO ORAL DELIVERY OF PROTEINS/PEPTIDES
(189)
7.3 STRATEGY FOR IMPROVED ORAL PROTEIN DELIVERY
(190)
7.4 POLYMERIC NANO/MICROPARTICLES AS A POSSIBLE ORAL PEPTIDE-DELIVERY SYSTEM
(190)
7.4.1 SYNTHETIC BIODEGRADABLE POLYMERIC NANO/MICROPARTICLES
(192)
7.4.2 NONBIODEGRADABLE SYNTHETIC POLYMERS
(196)
7.4.3 NATURAL AND PROTEIN-BASED POLYMERS FOR ORAL PEPTIDE DELIVERY
(199)
7.4.4 PREPARATION OF NANO/MICROPARTICLES
(200)
7.5 CONCLUDING REMARKS
(204)
REFERENCES
(204)
8 Nanostructured Porous Biomaterials for Controlled Drug Release Systems
(210)
8.1 INTRODUCTION
(210)
8.2 NANOSTRUCTURED POROUS MATERIALS
(213)
8.2.1 SOFT NANOSTRUCTURED POROUS MATERIALS
(213)
8.2.2 INORGANIC NANOSTRUCTURED POROUS MATERIALS
(214)
8.3 SUMMARY AND OUTLOOK
(226)
ACKNOWLEDGMENTS
(227)
REFERENCES
(227)
9 Inorganic Nanostructures for Drug Delivery
(234)
9.1 INTRODUCTION
(234)
9.2 NANOSTRUCTURED SILICA AS DRUG CARRIERS
(235)
9.3 NANOSTRUCTURED CALCIUM CARBONATE AND CALCIUM PHOSPHATES AS DRUG CARRIERS
(241)
9.4 MAGNETIC TARGETING DRUG DELIVERY SYSTEMS
(243)
9.5 CONCLUDING REMARKS
(248)
REFERENCES
(248)
Part III: Nano Biomaterials and Biosensors
(252)
10 Self-Assembly of Nanostructures as Biomaterials
(254)
10.1 INTRODUCTION TO LAYER-BY-LAYER SELF-ASSEMBLY
(255)
10.1.1 INTRODUCTION
(255)
10.1.2 METHODS FOR LBL SELF-ASSEMBLY
(255)
10.1.3 MATERIALS FOR LBL SELF-ASSEMBLY
(256)
10.1.4 CHARACTERIZATION OF LBL SELF-ASSEMBLY
(259)
10.2 MULTILAYERED BIOFILMS THROUGH LBL SELF-ASSEMBLY
(261)
10.2.1 INTRODUCTION
(261)
10.2.2 MULTILAYERED POLYELECTROLYTE FILMS FOR CELL ADHESION
(261)
10.2.3 ULTRATHIN COATINGS ON MEDICAL IMPLANTS
(263)
10.2.4 DRUG INCORPORATION IN POLYELECTROLYTE FILMS
(265)
10.2.5 MICROPATTERNING OF SELF-ASSEMBLED STRUCTURES
(265)
10.3 POLYELECTROLYTE ENCAPSULATION FOR DRUG/GENE DELIVERY
(267)
10.3.1 INTRODUCTION
(267)
10.3.2 LOADING BIOMACROMOLECULES INTO HOLLOW POLYELECTROLYTE SHELLS
(267)
10.3.3 MICROENCAPSULATION FOR GENE DELIVERY
(271)
10.3.4 DIRECT COATING ON PROTEIN AGGREGATES
(272)
10.3.5 ENCAPSULATION OF SMALL-MOLECULE DRUG MICRO/NANOPARTICLES
(273)
10.3.6 CARRIER SURFACE FUNCTIONALIZATION
(275)
10.4 POLYMERIC MICELLES FOR DRUG AND GENE DELIVERY
(276)
10.4.1 INTRODUCTION
(276)
10.4.2 AMPHIPHILIC BLOCK COPOLYMER MICELLES: PEO-PPO-PEO BLOCK COPOLYMER (PLURONIC)
(276)
10.4.3 AMPHIPHILIC BLOCK COPOLYMERS BASED ON ALIPHATIC POLYESTERS
(278)
10.4.4 BLOCK COPOLYMERS BASED ON POLY L-AMINO ACID (PLAA)
(280)
10.4.5 “SMART” MICELLES FOR DRUG DELIVERY APPLICATION
(282)
10.5 ENCAPSULATION OF BIOLOGICAL CELLS
(284)
10.6 CONCLUSIONS
(285)
ACKNOWLEDGMENTS
(286)
REFERENCES
(286)
11 Electrohydrodynamic Processing of Micro- and Nanometer Biological Materials
(292)
11.1 INTRODUCTION
(292)
11.2 ELECTROSPRAYING
(293)
11.2.1 DEFINITION
(293)
11.2.2 BACKGROUND
(294)
11.2.3 MECHANISMS AND MODES OF ELECTROSPRAYING
(296)
11.2.4 PROCESSING PARAMETERS
(297)
11.2.5 THEORY DESCRIPTION AND MODELING
(300)
11.2.6 BASIC ELECTROSPRAYING SYSTEM
(304)
11.2.7 CHARACTERISTICS OF ELECTROSPRAYING
(304)
11.2.8 FABRICATION OF BIOLOGICAL MATERIALS
(305)
11.3 SUMMARY
(346)
REFERENCES
(347)
12 Fabrication and Function of Biohybrid Nanomaterials Prepared via Supramolecular Approaches
(352)
12.1 INTRODUCTION
(352)
12.2 LIPID-BASED HYBRID NANOMATERIALS
(353)
12.3 HYBRID NANOMATERIALS WITH OTHER SMALL BIOACTIVE MOLECULES
(358)
12.4 HYBRID NANOMATERIALS WITH PROTEINS
(366)
12.5 FUTURE PERSPECTIVES
(376)
ACKNOWLEDGMENT
(378)
REFERENCES
(378)
13 Polypyrrole Nano- and Microsensors and Actuators for Biomedical Applications
(384)
13.1 INTRODUCTION
(385)
13.2 POLYPYRROLE ACTUATORS—SYNTHESIS AND PRINCIPLES OF OPERATION
(386)
13.2.1 INTRODUCTION
(386)
13.2.2 POLYPYRROLE ELECTROCHEMISTRY
(386)
13.2.3 ACTUATION OF POLYPYRROLE MICROSTRUCTURES
(391)
13.2.4 INTEGRATION OF POLYPYRROLE MICROSTRUCTURES WITH SILICON DEVICES
(393)
13.3 POLYPYRROLE MICROACTUATORS
(395)
13.3.1 BILAYER ACTUATORS
(395)
13.3.2 DIRECT-MODE POLYPYRROLE–PDMS MICROVALVE
(396)
13.4 POLYPYRROLE NANODEVICES
(400)
13.4.1 INTRODUCTION
(400)
13.4.2 POLYPYRROLE NANOWIRE ELECTROPOLYMERIZATION AND EVALUATION OF THE ELECTROCHEMICALLY CONTROLLED VOLUME CHANGE
(400)
13.4.3 POLYPYRROLE NANOWIRE MORPHOLOGY
(404)
13.4.4 TIME RESPONSE OF ISOLATED NANOWIRES
(406)
13.5 POLYPYRROLE BIOSENSORS
(410)
REFERENCES
(415)
14 Processing of Biosensing Materials and Biosensors
(418)
14.1 BIORECOGNITION MATERIALS
(419)
14.1.1 ENZYMES
(419)
14.1.2 MICROORGANISMS
(432)
14.1.3 DNA
(439)
14.1.4 ANTIGENS–ANTIBODIES
(439)
14.2 INTERMEDIA MATERIALS
(439)
14.2.1 CARBON NANOTUBES
(440)
14.2.2 POLYMER
(445)
14.2.3 NANOMATERIALS
(450)
14.2.4 FUNCTIONALIZED MONOLAYERS
(455)
14.2.5 DIAMOND
(456)
REFERENCES
(457)
Part IV: Other Biomaterials
(472)
15 Synthetic and Natural Degradable Polymeric Biomaterials
(474)
15.1 INTRODUCTION
(474)
15.2 DEGRADABLE POLYMERS
(476)
15.2.1 POLYESTERS
(476)
15.2.2 POLYDIOXANONE
(482)
15.2.3 POLYETHYLENE GLYCOL
(482)
15.2.4 TRIMETHYLENE CARBONATE
(483)
15.2.5 POLY(α-AMINO ACIDS)
(484)
15.2.6 POLY(ALKYL 2-CYANOACRYLATES)
(484)
15.2.7 POLYURETHANES
(485)
15.3 NATURAL DEGRADABLE POLYMERS
(486)
15.3.1 ALGINATES
(486)
15.3.2 CHITOSAN
(487)
15.3.3 ALBUMIN
(489)
15.3.4 COLLAGEN
(489)
15.3.5 HYALURONIC ACID
(489)
15.4 APPLICATIONS
(490)
15.4.1 ORTHOPEDICS
(490)
15.4.2 TISSUE ENGINEERING AND DEGRADABLE POLYMERS
(490)
15.4.3 DRUG DELIVERY
(492)
15.5 CONCLUSION
(492)
REFERENCES
(493)
16 Electroactive Polymers as Smart Materials with Intrinsic Actuation Properties: New Functionalities for Biomaterials
(500)
16.1 INTRODUCTION
(500)
16.2 ELECTROACTIVE POLYMERS
(502)
16.3 POLYMER GELS
(503)
16.4 IONIC POLYMER–METAL COMPOSITES
(506)
16.5 CONDUCTING POLYMERS
(507)
16.6 DIELECTRIC ELASTOMERS
(513)
16.7 CONCLUSIONS
(515)
REFERENCES
(515)
17 Blood-Contacting Surfaces
(522)
17.1 INTRODUCTION
(522)
17.2 BLOOD
(523)
17.2.1 ERYTHROCYTES
(524)
17.2.2 LEUKOCYTES
(524)
17.2.3 PLATELETS
(525)
17.2.4 PLASMA
(525)
17.3 BLOOD VESSELS
(525)
17.4 BLOOD-CONTACTING DEVICES
(526)
17.5 INTERACTION OF BLOOD WITH SYNTHETIC SURFACES
(527)
17.5.1 PROTEIN ADSORPTION
(527)
17.5.2 COAGULATION
(527)
17.5.3 PLATELET ADHESION AND ACTIVATION
(532)
17.5.4 COMPLEMENT SYSTEM
(533)
17.5.5 LEUKOCYTES
(534)
17.6 SURFACES OF BLOOD-CONTACTING DEVICES
(534)
17.6.1 BIOINERT MATERIALS IN BLOOD-CONTACTING DEVICES
(535)
17.6.2 POLYMERIC COATINGS
(536)
17.6.3 LIVING CELL LAYER AS BOUNDARY LAYER
(538)
17.6.4 TISSUE ENGINEERING
(539)
17.7 BLOOD COMPATIBILITY TESTING
(540)
17.7.1 THROMBIN GENERATION AND THROMBUS FORMATION
(541)
17.7.2 PLATELET ADHESION AND ACTIVATION
(543)
17.7.3 LEUKOCYTE ADHESION AND ACTIVATION
(545)
17.7.4 COMPLEMENT ACTIVATION
(546)
17.7.5 HEMOLYSIS
(546)
17.7.6 CELL COMPATIBILITY/ENDOTHELIALIZATION
(546)
17.8 CONCLUDING REMARKS
(547)
REFERENCES
(548)
18 Improving Blood Compatibility of Biomaterials Using a Novel Antithrombin-Heparin Covalent Complex
(552)
18.1 INTRODUCTION
(552)
18.2 ANTITHROMBIN
(555)
18.2.1 CHEMICAL STRUCTURE OF ANTITHROMBIN
(555)
18.2.2 FUNCTIONAL BIOCHEMISTRY OF ANTITHROMBIN
(556)
18.3 HEPARIN
(558)
18.3.1 CHEMICAL STRUCTURE OF HEPARIN
(558)
18.3.2 FUNCTIONAL BIOCHEMISTRY OF HEPARIN
(559)
18.4 OVERVIEW OF COVALENT ANTITHROMBIN–HEPARIN COMPLEXES
(561)
18.4.1 LIMITATIONS OF CURRENT HEPARINS
(561)
18.4.2 POTENTIAL ADVANTAGES OF COVALENT ANTITHROMBIN-HEPARIN COMPLEXES
(562)
18.5 DEVELOPMENT OF COVALENT ANTITHROMBIN–HEPARIN COMPLEXES
(564)
18.5.1 CONCEPTS FOR COVALENT ANTITHROMBIN-HEPARIN SYNTHESIS
(564)
18.5.2 CHEMICAL STRUCTURES AND In Vitro ACTIVITIES
(565)
18.5.3 EFFECTS In Vivo
(570)
18.6 SURFACE COATING WITH COVALENT ANTITHROMBIN–HEPARIN COMPLEXES
(573)
18.6.1 CHEMISTRY AND In Vitro CHARACTERIZATION
(573)
18.6.2 IN VIVO PERFORMANCE
(575)
18.7 FUTURE DIRECTIONS
(577)
REFERENCES
(577)
19 Surface Modification of Biomaterials Using Plasma Immersion Ion Implantation and Deposition
(590)
19.1 PLASMA SCIENCE AND TECHNOLOGY
(591)
19.1.1 PLASMA SOURCES
(591)
19.1.2 PLASMA PROPERTIES AND DIAGNOSTICS
(593)
19.2 PLASMA IMMERSION ION IMPLANTATION AND DEPOSITION
(595)
19.2.1 CONCEPTS AND FUNDAMENTALS OF PIII
(595)
19.2.2 ION-SOLID INTERACTIONS INDUCED BY ION IMPLANTATION
(596)
19.2.3 DEPOSITION PROCESS AND DYNAMICS
(597)
19.2.4 PIII VERSUS CONVENTIONAL BEAM-LINE ION IMPLANTATION
(598)
19.2.5 APPLICATIONS OF PIII
(598)
19.3 SURFACE ACTIVATION OF BIOMATERIALS
(600)
19.3.1 HYDROGEN PIII
(600)
19.3.2 Ca/Na PIIID OF TITANIUM
(607)
19.4 SURFACE MODIFICATION OF NiTi ALLOY
(612)
19.5 SURFACE MODIFICATION OF BLOOD-CONTACTING MATERIALS
(618)
19.5.1 DLC THIN FILMS
(618)
19.5.2 TI–O THIN FILM
(631)
19.6 SURFACE MODIFICATION OF POLYMERS FOR ENHANCED ANTIBACTERIAL PROPERTIES
(635)
19.6.1 Cu-IMPLANTED POLYMERS
(635)
19.6.2 GRAFTING OF ANTIMICROBIAL REAGENTS ON POLYMERS
(639)
19.7 SUMMARY
(640)
ACKNOWLEDGMENTS
(640)
REFERENCES
(641)
20 Biomaterials for Gastrointestinal Medicine, Repair, and Reconstruction
(650)
20.1 INTRODUCTION
(651)
20.2 BIOMATERIALS USED FOR GASTROESOPHAGEAL REFLUX DISEASE
(652)
20.2.1 GASTROESOPHAGEAL REFLUX DISEASE
(652)
20.2.2 SPHINCTER AUGMENTATION USING BIOMATERIALS
(652)
20.3 BIOMATERIALS USED FOR GASTROINTESTINAL FISTULA REPAIR
(653)
20.3.1 GASTROINTESTINAL FISTULAS
(653)
20.3.2 FISTULA REPAIR USING BIOMATERIALS
(653)
20.4 BULKING BIOMATERIALS
(654)
20.4.1 FECAL INCONTINENCE
(654)
20.4.2 INJECTABLE BULKING MATERIALS
(655)
20.5 BIOMATERIALS AND LAPAROTOMY PROCEDURES
(658)
20.5.1 INTRA-ABDOMINAL ADHESIONS
(658)
20.5.2 BIOMATERIALS TO PREVENT INTRA-ABDOMINAL ADHESIONS
(658)
20.6 TARGETED DRUG DELIVERY WITH BIOMATERIALS
(661)
20.6.1 DRUG DELIVERY TO THE COLON
(661)
20.7 BIOMATERIALS FOR INTESTINAL TISSUE ENGINEERING
(664)
20.7.1 INTESTINAL FAILURE AND TISSUE ENGINEERING
(664)
20.7.2 BIOMATERIALS USED FOR INTESTINAL TISSUE ENGINEERING
(665)
20.8 SUMMARY
(670)
REFERENCES
(671)
21 Biomaterials for Cartilage Reconstruction and Repair
(676)
21.1 ARTICULAR CARTILAGE BIOLOGY—STRUCTURE AND PROPERTIES
(676)
21.2 REPAIR OF ARTICULAR CARTILAGE
(678)
21.3 CARTILAGE RECONSTRUCTION—ARTIFICIAL CARTILAGE
(679)
21.3.1 HYDROGELS
(679)
21.3.2 SYNTHETIC SEGMENTED POLYESTERS AND POLYURETHANES
(684)
21.4 TISSUE ENGINEERING APPROACH
(685)
21.5 TOTAL JOINT REPLACEMENT
(687)
21.6 SUMMARY
(692)
ACKNOWLEDGMENTS
(692)
REFERENCES
(692)
Index (with page links)
(696)
A
(696)
B
(697)
C
(699)
D
(701)
E
(702)
F
(703)
G
(704)
H
(704)
I
(705)
J
(706)
K
(706)
L
(706)
M
(707)
N
(708)
O
(709)
P
(710)
Q
(714)
R
(714)
S
(714)
T
(716)
U
(717)
V
(718)
W
(718)
X
(718)
Y
(718)
Z
(718)
Back Page
(720)