کتابخانه مرکزی دانشگاه صنعتی شریف
    • [نمايش بزرگتر]
    • [نمايش کوچکتر]
  • صفحه 
     از  0
  • [صفحه قبل]
  • [صفحه بعد]
  • [نمایش تمام صفحه]
  • [بستن]
 
Computational electromagnetics with MATLAB®
Sadiku, Matthew N. O.

اطلاعات کتابشناختی

Computational electromagnetics with MATLAB®
Author :   Sadiku, Matthew N. O.
Publisher :   CRC Press,
Pub. Year  :   2019
Subjects :   MATLAB. Electromagnetism -- Mathematical models.
Call Number :   ‭QC 760 .54 .S32 2019

جستجو در محتوا

ترتيب

فهرست مطالب

  • Cover (1)
  • Half Title (2)
  • Title Page (4)
  • Copyright Page (5)
  • Dedication (6)
  • Contents (8)
  • Preface (14)
  • Acknowledgment (16)
  • A Note to Students (18)
  • Author (20)
  • 1. Fundamental Concepts (22)
    • 1.1 Introduction (22)
    • 1.2 Review of EM Theory (24)
      • 1.2.1 Electrostatic Fields (24)
      • 1.2.2 Magnetostatic Fields (25)
      • 1.2.3 Time-Varying Fields (26)
      • 1.2.4 Boundary Conditions (28)
      • 1.2.5 Wave Equations (29)
      • 1.2.6 Time-Varying Potentials (30)
      • 1.2.7 Time-Harmonic Fields (32)
    • 1.3 Classification of EM Problems (36)
      • 1.3.1 Classification of Solution Regions (36)
      • 1.3.2 Classification of Differential Equations (36)
      • 1.3.3 Classification of Boundary Conditions (40)
    • 1.4 Some Important Theorems (42)
      • 1.4.1 Superposition Principle (42)
      • 1.4.2 Uniqueness Theorem (42)
    • References (48)
  • 2. Analytical Methods (50)
    • 2.1 Introduction (50)
    • 2.2 Separation of Variables (50)
    • 2.3 Separation of Variables in Rectangular Coordinates (53)
      • 2.3.1 Laplace’s Equation (53)
      • 2.3.2 Wave Equation (57)
    • 2.4 Separation of Variables in Cylindrical Coordinates (63)
      • 2.4.1 Wave Equation (66)
    • 2.5 Separation of Variables in Spherical Coordinates (77)
      • 2.5.1 Laplace’s Equation (78)
      • 2.5.2 Wave Equation (82)
    • 2.6 Some Useful Orthogonal Functions (92)
    • 2.7 Series Expansion (101)
      • 2.7.1 Poisson’s Equation in a Cube (101)
      • 2.7.2 Poisson’s Equation in a Cylinder (103)
      • 2.7.3 Strip Transmission Line (106)
    • 2.8 Practical Applications (111)
      • 2.8.1 Scattering by Dielectric Sphere (111)
      • 2.8.2 Scattering Cross Sections (116)
    • 2.9 Attenuation due to Raindrops (119)
    • 2.10 Concluding Remarks (126)
    • References (141)
  • 3. Finite Difference Methods (144)
    • 3.1 Introduction (144)
    • 3.2 Finite Difference Schemes (145)
    • 3.3 Finite Differencing of Parabolic PDEs (148)
    • 3.4 Finite Differencing of Hyperbolic PDEs (153)
    • 3.5 Finite Differencing of Elliptic PDEs (157)
      • 3.5.1 Band Matrix Method (158)
      • 3.5.2 Iterative Methods (158)
    • 3.6 Accuracy and Stability of FD Solutions (161)
    • 3.7 Practical Applications I: Guided Structures (168)
      • 3.7.1 Transmission Lines (168)
      • 3.7.2 Waveguides (174)
    • 3.8 Practical Applications II: Wave Scattering (FDTD) (177)
      • 3.8.1 Yee’s Finite Difference Algorithm (180)
      • 3.8.2 Accuracy and Stability (182)
      • 3.8.3 Lattice Truncation Conditions (183)
      • 3.8.4 Initial Fields (185)
      • 3.8.5 Programming Aspects (186)
    • 3.9 Absorbing Boundary Conditions for FDTD (194)
    • 3.10 Advanced Applications of FDTD (202)
      • 3.10.1 Periodic Structures (202)
      • 3.10.2 Antennas (203)
      • 3.10.3 PSTD Techniques (203)
      • 3.10.4 Photonics (203)
      • 3.10.5 Metamaterials (203)
      • 3.10.6 MEEP (204)
    • 3.11 Finite Differencing for Nonrectangular Systems (204)
      • 3.11.1 Cylindrical Coordinates (204)
      • 3.11.2 Spherical Coordinates (208)
    • 3.12 Numerical Integration (210)
      • 3.12.1 Euler’s Rule (211)
      • 3.12.2 Trapezoidal Rule (213)
      • 3.12.3 Simpson’s Rule (214)
      • 3.12.4 Newton–Cotes Rules (215)
      • 3.12.5 Gaussian Rules (217)
      • 3.12.6 Multiple Integration (218)
    • 3.13 Concluding Remarks (223)
    • References (242)
  • 4. Variational Methods (250)
    • 4.1 Introduction (250)
    • 4.2 Operators in Linear Spaces (250)
    • 4.3 Calculus of Variations (253)
    • 4.4 Construction of Functionals from PDEs (257)
    • 4.5 Rayleigh–Ritz Method (260)
    • 4.6 Weighted Residual Method (267)
    • 4.7 Collocation Method (268)
      • 4.7.1 Subdomain Method (269)
      • 4.7.2 Galerkin Method (270)
      • 4.7.3 Least Squares Method (270)
    • 4.8 Eigenvalue Problems (276)
    • 4.9 Practical Applications (282)
    • 4.10 Concluding Remarks (289)
    • References (297)
  • 5. Moment Methods (300)
    • 5.1 Introduction (300)
    • 5.2 Differential Equations (301)
    • 5.3 Integral Equations (303)
      • 5.3.1 Classification of IEs (304)
      • 5.3.2 Connection between Differential and IEs (305)
    • 5.4 Green’s Functions (308)
      • 5.4.1 For Free Space (309)
      • 5.4.2 For Domain with Conducting Boundaries (314)
        • 5.4.2.1 Method of Images (314)
        • 5.4.2.2 Eigenfunction Expansion (316)
    • 5.5 Applications I: Quasi-Static Problems (326)
    • 5.6 Applications II: Scattering Problems (331)
      • 5.6.1 Scattering by Conducting Cylinder (332)
      • 5.6.2 Scattering by an Arbitrary Array of Parallel Wires (335)
    • 5.7 Applications III: Radiation Problems (341)
      • 5.7.1 Hallen’s IE (343)
      • 5.7.2 Pocklington’s IE (344)
      • 5.7.3 Expansion and Weighting Functions (344)
    • 5.8 Applications IV: EM Absorption in the Human Body (355)
      • 5.8.1 Derivation of IEs (356)
      • 5.8.2 Transformation to Matrix Equation (Discretization) (359)
      • 5.8.3 Evaluation of Matrix Elements (360)
      • 5.8.4 Solution of the Matrix Equation (361)
    • 5.9 Concluding Remarks (372)
    • References (387)
  • 6. Finite Element Method (392)
    • 6.1 Introduction (392)
    • 6.2 Solution of Laplace’s Equation (393)
      • 6.2.1 Finite Element Discretization (393)
      • 6.2.2 Element Governing Equations (394)
      • 6.2.3 Assembling of All Elements (398)
      • 6.2.4 Solving the Resulting Equations (400)
    • 6.3 Solution of Poisson’s Equation (406)
      • 6.3.1 Deriving Element-Governing Equations (408)
      • 6.3.2 Solving the Resulting Equations (411)
    • 6.4 Solution of the Wave Equation (413)
    • 6.5 Automatic Mesh Generation I: Rectangular Domains (416)
    • 6.6 Automatic Mesh Generation II: Arbitrary Domains (420)
      • 6.6.1 Definition of Blocks (421)
      • 6.6.2 Subdivision of Each Block (422)
      • 6.6.3 Connection of Individual Blocks (423)
    • 6.7 Bandwidth Reduction (423)
    • 6.8 Higher-Order Elements (429)
      • 6.8.1 Pascal Triangle (429)
      • 6.8.2 Local Coordinates (430)
      • 6.8.3 Shape Functions (432)
      • 6.8.4 Fundamental Matrices (434)
    • 6.9 Three-Dimensional Elements (441)
    • 6.10 FEMs for Exterior Problems (446)
      • 6.10.1 Infinite Element Method (446)
      • 6.10.2 Boundary Element Method (447)
      • 6.10.3 Absorbing Boundary Condition (448)
    • 6.11 Finite-Element Time-Domain Method (449)
    • 6.12 Applications: Microstrip Lines (451)
    • 6.13 Concluding Remarks (453)
    • References (465)
  • 7. Transmission-Line-Matrix Method (472)
    • 7.1 Introduction (472)
    • 7.2 Transmission-Line Equations (474)
    • 7.3 Solution of Diffusion Equation (477)
    • 7.4 Solution of Wave Equations (481)
      • 7.4.1 Equivalence between Network and Field Parameters (482)
      • 7.4.2 Dispersion Relation of Propagation Velocity (485)
      • 7.4.3 Scattering Matrix (487)
      • 7.4.4 Boundary Representation (489)
      • 7.4.5 Computation of Fields and Frequency Response (490)
      • 7.4.6 Output Response and Accuracy of Results (491)
    • 7.5 Inhomogeneous and Lossy Media in TLM (496)
      • 7.5.1 General 2-D Shunt Node (496)
      • 7.5.2 Scattering Matrix (498)
      • 7.5.3 Representation of Lossy Boundaries (499)
    • 7.6 3-D TLM Mesh (504)
      • 7.6.1 Series Nodes (504)
      • 7.6.2 3-D Node (506)
      • 7.6.3 Boundary Conditions (510)
    • 7.7 Error Sources and Correction (518)
      • 7.7.1 Truncation Error (519)
      • 7.7.2 Coarseness Error (519)
      • 7.7.3 Velocity Error (519)
      • 7.7.4 Misalignment Error (520)
    • 7.8 Absorbing Boundary Conditions (520)
    • 7.9 Concluding Remarks (522)
    • References (529)
  • 8. Monte Carlo Methods (534)
    • 8.1 Introduction (534)
    • 8.2 Generation of Random Numbers and Variables (535)
    • 8.3 Evaluation of Error (538)
    • 8.4 Numerical Integration (542)
      • 8.4.1 Crude Monte Carlo Integration (542)
      • 8.4.2 Monte Carlo Integration with Antithetic Variates (544)
      • 8.4.3 Improper Integrals (545)
    • 8.5 Solution of Potential Problems (547)
      • 8.5.1 Fixed Random Walk (547)
      • 8.5.2 Floating Random Walk (551)
      • 8.5.3 Exodus Method (554)
    • 8.6 Markov Chain Regional MCM (566)
    • 8.7 MCMC for Poisson’s Equation (573)
    • 8.8 Time-Dependent Problems (577)
    • 8.9 Concluding Remarks (583)
    • References (593)
  • 9. Method of Lines (598)
    • 9.1 Introduction (598)
    • 9.2 Solution of Laplace’s Equation (599)
      • 9.2.1 Rectangular Coordinates (599)
      • 9.2.2 Cylindrical Coordinates (605)
    • 9.3 Solution of Wave Equation (609)
      • 9.3.1 Planar Microstrip Structures (611)
      • 9.3.2 Cylindrical Microstrip Structures (618)
    • 9.4 Time-Domain Solution (625)
    • 9.5 Concluding Remarks (627)
    • References (630)
  • Selected Bibliography (634)
  • Appendix A: Vector Relations (638)
  • Appendix B: Programming in MATLAB (642)
  • Appendix C: Solution of Simultaneous Equations (656)
  • Appendix D: Computational Electromagnetic Codes (676)
  • Appendix E: Answers to Odd-Numbered Problems (678)
  • Index (698)
Loading...