برای استفاده از امکانات سیستم، گزینه جاوا اسکریپت در مرورگر شما باید فعال باشد
صفحه
از
0
Constructing quantum mechanics
Duncan, Anthony, (Professor of physics).
اطلاعات کتابشناختی
Spectral and dynamical stability of nonlinear waves
Author :
Kapitula, Todd.
Publisher :
Springer,
Pub. Year :
2013
Subjects :
Nonlinear waves. Nonlinear wave equations. Mathematics Differentiable dynamical systems...
Call Number :
QA 927 .K255 2013
جستجو در محتوا
ترتيب
شماره صفحه
امتياز صفحه
فهرست مطالب
Cover
(1)
CONSTRUCTING QUANTUM MECHANICS
(2)
Copyright
(5)
Preface
(6)
Contents
(12)
List of plates
(16)
Chapter 1 Introduction to Volume One
(26)
1.1 Overview
(26)
1.2 Early developments: Planck, Einstein, and Bohr
(27)
1.2.1 Planck, the second law, and black-body radiation
(27)
1.2.2 Planck’s first tenuous steps toward energy quantization
(29)
1.2.3 Einstein, equipartition, and light quanta
(29)
1.2.4 Einstein, fluctuations, and light quanta
(31)
1.2.5 Lorentz convinces Planck of energy quantization
(32)
1.2.6 From Einstein, equipartition, and specific heat to Nernst and the Solvay conference
(33)
1.2.7 Bohr and Rutherford’s model of the atom
(35)
1.2.8 Bohr and Nicholson’s theory
(37)
1.2.9 The Balmer formula and the birth of the Bohr model of the atom
(38)
1.2.10 Einstein and the Bohr model
(41)
1.3 The old quantum theory: principles, successes, and failures
(42)
1.3.1 Sommerfeld’s path to quantum theory
(43)
1.3.2 Quantum conditions: Planck, Sommerfeld, Ishiwara, Wilson, Schwarzschild, and Epstein
(47)
1.3.3 Ehrenfest and the adiabatic principle
(50)
1.3.4 The correspondence principle from Bohr to Kramers, Born, and Van Vleck
(54)
1.3.5 The old quantum theory’s winning streak: fine structure, Stark effect, X-ray spectra
(56)
1.3.6 The old quantum theory’s luck runs out:multiplets, Zeeman effect, helium
(60)
1.3.7 Born taking stock
(66)
Part I Early Developments
(68)
Chapter 2 Planck, the Second Law of Thermodynamics, and Black-body Radiation
(70)
2.1 The birthdate of quantum theory?
(70)
2.2 Early work on black-body radiation (1860–1896)
(76)
2.3 Planck, the second law of thermodynamics, and black-body radiation (1895–1899)
(80)
2.4 From the Wien law to the Planck law: changing the expression for the entropy of a resonator
(90)
2.5 Justifying the new expression for the entropy of a resonator
(96)
2.6 Energy parcels or energy bins?
(102)
Chapter 3 Einstein, Equipartition, Fluctuations, and Quanta
(109)
3.1 Einstein’s annus mirabilis
(109)
3.2 The statistical trilogy (1902–1904)
(111)
3.3 The light-quantum paper (1905)
(119)
3.3.1 Classical theory leads to the Rayleigh–Jeans law
(119)
3.3.2 Einstein’s argument for light quanta: fluctuations in black-body radiation at high frequencies
(121)
3.3.3 Evidence for light quanta: the photoelectric effect
(128)
3.4 Black-body radiation and the necessity of quantization
(132)
3.4.1 The quantization of Planck’s resonators
(132)
3.4.2 Lorentz’s 1908 Rome lecture: Planck versus Rayleigh–Jeans
(137)
3.4.3 Einstein’s 1909 Salzburg lecture: fluctuations and wave–particle duality
(142)
3.5 The breakdown of equipartition and the specific heat of solids at low temperatures (1907–1911)
(152)
3.6 Einstein’s quantum theory of radiation (1916)
(158)
3.6.1 New derivation of the Planck law
(159)
3.6.2 Momentum fluctuations and the directed nature of radiation
(163)
Chapter 4 The Birth of the Bohr Model
(168)
4.1 Introduction
(168)
4.2 The dissertation: recognition of problems of classical theory
(170)
4.3 The Rutherford Memorandum: atomic models and quantum theory
(173)
4.3.1 Prelude: classical atomic models (Thomson, Nagaoka, Schott)
(174)
4.3.2 Scattering of α particles and Rutherford’s nuclear atom
(177)
4.3.3 Bohr’s first encounter with Rutherford’s nuclear atom: energy loss of α particles traveling through matter
(180)
4.3.4 Interlude: Planck’s constant enters atomic modeling (Haas, Nicholson)
(182)
4.3.5 Planck’s constant enters Bohr’s atomic modeling
(190)
4.4 From the Rutherford Memorandum to the Trilogy
(196)
4.4.1 Bohr comparing his results to Nicholson’s
(196)
4.4.2 Enter the Balmer formula
(200)
4.5 The Trilogy: quantum atomic models and spectra
(203)
4.5.1 Part One: the hydrogen atom
(204)
4.5.2 Parts Two and Three: multi-electron atoms and multi-atom molecules
(210)
4.6 Early evidence for the Bohr model: spectral lines in hydrogen and helium
(221)
Part II The Old Quantum Theory
(228)
Chapter 5 Guiding Principles
(230)
5.1 Quantization conditions
(231)
5.1.1 Planck
(231)
5.1.2 Wilson and Ishiwara
(240)
5.1.3 Sommerfeld
(244)
5.1.4 Schwarzschild, Epstein, and (once again) Sommerfeld
(248)
5.1.5 Einstein
(253)
5.2 The adiabatic principle
(254)
5.2.1 Ehrenfest’s early work on adiabatic invariants
(255)
5.2.2 Ehrenfest’s 1916 paper on the adiabatic principle
(264)
5.2.3 The adiabatic principle in Bohr’s 1918 paper
(270)
5.2.4 Sommerfeld’s attitude to the adiabatic principle
(273)
5.3 The correspondence principle
(274)
Chapter 6 Successes
(284)
6.1 Fine structure
(285)
6.2 X-ray spectra
(300)
6.3 The Stark effect
(309)
Chapter 7 Failures
(325)
7.1 The complex structure of spectral multiplets
(326)
7.1.1 Sommerfeld on multiplets
(327)
7.1.2 Heisenberg’s core model and multiplets
(338)
7.2 The anomalous Zeeman effect
(343)
7.2.1 The Lorentz theory of the normal Zeeman effect
(344)
7.2.2 Anomalous Zeeman effect: experimental results and pre-Bohr theoretical interpretations
(346)
7.2.3 The Paschen–Back transmutation of Zeeman lines
(354)
7.3 The Zeeman effect in the old quantum theory
(358)
7.3.1 First steps (1913–1919)
(358)
7.3.2 Empirical regularities and number mysticism (1919–1921)
(362)
7.3.3 Core models, unmechanical forces, and double-valuedness
(371)
7.4 The problem of helium
(386)
Appendices
(408)
A Classical Mechanics
(410)
A.1 The physicist’s mechanical toolbox (ca 1915)
(412)
A.1.1 Newtonian mechanics
(412)
A.1.2 Lagrangian mechanics
(414)
A.1.3 Hamiltonian mechanics
(418)
A.1.4 The adiabatic principle
(427)
A.2 The astronomer’s mechanical toolbox (ca 1915)
(433)
A.2.1 Hamilton–Jacobi theory
(433)
A.2.2 Poisson brackets
(440)
A.2.3 Action-angle variables
(443)
A.2.4 Canonical perturbation theory
(448)
B Spectroscopy
(455)
B.1 Early quantitative spectroscopy
(455)
B.2 Kirchhoff’s Laws
(458)
B.3 Technological advances and the emergence of analytic spectroscopy
(459)
B.4 The numerology of spectra: Balmer and Rydberg
(460)
B.5 The Zeeman effect
(466)
B.6 A troublesome red herring
(467)
B.7 Ritz and the combination principle
(468)
Bibliography
(474)
Index
(506)