کتابخانه مرکزی دانشگاه صنعتی شریف
    • [نمايش بزرگتر]
    • [نمايش کوچکتر]
  • صفحه 
     از  0
  • [صفحه قبل]
  • [صفحه بعد]
  • [نمایش تمام صفحه]
  • [بستن]
 
Optimization of power system problems : methods, algorithms and MATLAB codes

اطلاعات کتابشناختی

Optimization of power system problems : methods, algorithms and MATLAB codes
پدیدآور اصلی :  
ناشر :   Springer,
سال انتشار  :   2020
موضوع ها :   Electric power systems. Mathematical optimization.
شماره راهنما :   ‭TK 1001 .O69 2020

جستجو در محتوا

ترتيب

فهرست مطالب

  • Introduction (6)
    • Motivation (6)
    • A Brief Overview of the Book Covered Topics (6)
    • The Book Organization (6)
  • Contents (11)
  • Modelling for Composite Load Model Including Participation of Static and Dynamic Load (13)
    • 1 Introduction (14)
    • 2 Classification of Load Model (15)
      • 2.1 Connected Load (16)
      • 2.2 Demand Load (16)
      • 2.3 Base Load (16)
      • 2.4 Peak Load (17)
      • 2.5 Average Load (17)
    • 3 Structure of Loads Model (17)
      • 3.1 Structure for Static Load Model (19)
      • 3.2 Structure of Dynamic Load (24)
      • 3.3 Structure of Aggregate Load (38)
    • 4 Modelling for Composite Load Model (42)
      • 4.1 Development of Mathematical Model for Static Load (44)
      • 4.2 Development of Mathematical Model for Dynamic Load (46)
    • 5 Conclusion (57)
    • References (59)
  • A Novel Forward-Backward Sweep Based Optimal DG Placement Approach in Radial Distribution Systems (61)
    • 1 Motivation and Literature Review (62)
    • 2 Optimal DG allocation problem (65)
      • 2.1 FBS power flow (65)
      • 2.2 Total active power loss, bus voltage limit, and feeder current capacity (66)
    • 3 Proposed Algorithm and Illustrative Example (67)
    • 4 Conclusions (72)
    • References (72)
  • Optimal Capacitor Placement in Distribution Systems Using a Backward-Forward Sweep Based Load Flow Method (74)
    • 1 Introduction (75)
    • 2 Mathematical modeling of load flow based optimization problem (77)
      • 2.1 Forward-backward load flow (77)
      • 2.2 Optimal places for installation of capacitor banks (78)
    • 3 Illustrative Example (79)
    • 4 Conclusions (84)
    • References (84)
  • Optimal Capacitor Placement and Sizing in Distribution Networks (86)
    • 1 Introduction (87)
    • 2 Reactive Power Compensation (88)
      • 2.1 Benefit of Reactive Power Compensation (88)
      • 2.2 Disadvantages of Reactive Power Compensation (90)
    • 3 Literature Review (91)
      • 3.1 Analytical Approaches (91)
      • 3.2 Numerical Computation Algorithms (92)
      • 3.3 Artificial Intelligent Algorithms (93)
    • 4 Problem Formulation (93)
      • 4.1 Objective Function (93)
      • 4.2 Constraints (94)
    • 5 Modeling and Optimization Algorithm (94)
      • 5.1 Teaching and Learning Based Optimization Algorithm (94)
      • 5.2 Matching TLBO with Capacitor Placement Problem (97)
      • 5.3 Load Model (97)
    • 6 Numerical Results (98)
      • 6.1 Test Cases (98)
      • 6.2 10-Bus Test Case (99)
      • 6.3 33-Bus Test Case (99)
    • 7 Conclusion (102)
    • MATLAB Code (103)
    • References (110)
  • Binary Group Search Optimization for Distribution Network Reconfiguration (113)
    • 1 Literature Review (114)
    • 2 Group Search Optimization Algorithm (GSO) (114)
      • 2.1 Basics of GSO (115)
      • 2.2 Binary Group Search Optimization (BGSO) (117)
    • 3 Problem Formulation (124)
    • 4 Developed Source Code (127)
    • 5 Test Results (131)
      • 5.1 69-Node System (131)
      • 5.2 119-Node System (131)
    • 6 Conclusion (132)
    • MATLAB Code (134)
    • References (135)
  • Combined Heat and Power Economic Dispatch Using Particle Swarm Optimization (137)
    • 1 Introduction (138)
    • 2 Background (139)
    • 3 Problem Formulation (139)
      • 3.1 Objective Function (139)
      • 3.2 Constraints (140)
      • 3.3 Particle Swarm Optimization (141)
    • 4 Simulation, Results and Discussion (142)
    • 5 Conclusion (142)
    • MATLAB Codes (146)
    • References (151)
  • Combined Heat and Power Stochastic Dynamic Economic Dispatch Using Particle Swarm Optimization Considering Load and Wind Power Uncertainties (152)
    • 1 Introduction (154)
    • 2 Background (154)
    • 3 Uncertainty Modeling (155)
      • 3.1 Scenario Generation (155)
      • 3.2 Scenario Reduction (157)
    • 4 Stochastic Dynamic Economic Dispatch (158)
      • 4.1 Objective Function (158)
      • 4.2 Constraints (159)
      • 4.3 Wind Turbine Formulation (160)
      • 4.4 Particle Swarm Optimization (160)
    • 5 Simulation, Results, and Discussion (161)
    • 6 Conclusions (164)
    • MATLAB Codes (165)
    • References (177)
  • Economic Dispatch of Multiple-Chiller Plants Using Wild Goats Algorithm (179)
    • 1 Motivation and Literature Review (180)
    • 2 Problem Formulation (181)
      • 2.1 Economic Dispatch of Multiple-Chiller Systems (181)
      • 2.2 Proposed Optimization Algorithm (182)
    • 3 Case Studies and Discussions (183)
    • 4 Conclusion (190)
    • MATLAB Codes (191)
    • References (201)
  • Optimization of Tilt Angle for Intercepting Maximum Solar Radiation for Power Generation (203)
    • 1 Introduction (203)
    • 2 Methodology (204)
      • 2.1 Optimum Tilt Angle Determination (204)
    • 3 Results and Discussion (206)
    • 4 Conclusions (206)
    • MATLAB Code (218)
    • References (220)
  • Probabilistic Power Flow Analysis of Distribution Systems Using Monte Carlo Simulations (222)
    • 1 Introduction (223)
    • 2 Problem Formulation (225)
      • 2.1 Forward-Backward Sweep Algorithm (225)
      • 2.2 Monte Carlo Simulations (226)
    • 3 Proposed Approach and Case Study (227)
    • 4 Conclusion (230)
    • MATLAB Code (231)
    • References (238)
  • Long-Term Load Forecasting Approach Using Dynamic Feed-Forward Back-Propagation Artificial Neural Network (240)
    • 1 Introduction (241)
    • 2 Problem Formulation (243)
      • 2.1 Artificial Neural Network (ANN) (243)
      • 2.2 Dynamic Artificial Neural Network (DANN) (245)
      • 2.3 Back Propagation Technique (BP) (245)
      • 2.4 Levenberg Marquardt Algorithm (LM) (248)
      • 2.5 Bayesian Regularization (BR) (249)
      • 2.6 Scaled Conjugated Gradient (SCG) (250)
    • 3 Numerical Result and Discussions (251)
      • 3.1 Resiliency of Hybrid Proposed Strategy (251)
      • 3.2 Robustness and Scalability (252)
    • 4 Conclusion (257)
    • MATLAB Code (258)
    • References (262)
  • Multi-objective Economic and Emission Dispatch Using MOICA: A Competitive Study (265)
    • 1 Introduction (266)
    • 2 Problem Description (267)
      • 2.1 Equalities and Inequalities Constraints (268)
    • 3 Multi-objective Optimization Algorithm (269)
      • 3.1 The Imperialist Competitive Algorithm (270)
      • 3.2 The MOICA (271)
      • 3.3 Selecting the Best Compromise Solution (273)
    • 4 The Numeric Results (273)
      • 4.1 Initialization of Algorithm (274)
      • 4.2 The Simulation Results (274)
    • 5 Conclusion (276)
    • MATLAB Codes (279)
    • References (316)
  • Voltage Control by Optimized Participation of Reactive Power Compensation Using Fixed Capacitor and STATCOM (318)
    • 1 Role of Reactive Power Compensation (319)
    • 2 Introduction to Reactive Power Compensators (321)
      • 2.1 Introduction to Reactive Power Market (322)
      • 2.2 Selection of Dynamic and Static Compensator (324)
    • 3 Reactive Power Compensation Cost Analysis (326)
      • 3.1 Reactive Power as an Ancillary Service (326)
      • 3.2 Pricing Options in Reactive Power Compensation (327)
      • 3.3 Synchronous Generator as Reactive Power Service Provider (328)
      • 3.4 Fixed Capacitor as Reactive Power Service Provider (330)
      • 3.5 STATCOM as Reactive Power Service Provider (331)
    • 4 Reactive Power Compensation Scheme in Ihes (332)
    • 5 Simulink Model Representation for IHES (334)
      • 5.1 Modelling for Reactive Power Balance in IHES (335)
      • 5.2 Synchronous Generator Model Equations (336)
      • 5.3 Induction Generator Model Equations (337)
      • 5.4 Fixed Capacitor Model Equations (339)
      • 5.5 STATCOM Model Equations (340)
    • 6 Importance of Dynamic Compensator for Voltage Control (351)
    • 7 Optimization of Reactive Power Participation (352)
    • 8 Conclusion and Future Scope (364)
    • References (366)
  • Backward-Forward Sweep Based Power Flow Algorithm in Distribution Systems (369)
    • 1 Introduction (370)
    • 2 Forward-Backward Sweep Power Flow (371)
    • 3 Case Study and Discussions (372)
    • 4 Conclusion (373)
    • MATLAB Code (378)
    • References (385)
Loading...