کتابخانه مرکزی دانشگاه صنعتی شریف
    • [نمايش بزرگتر]
    • [نمايش کوچکتر]
  • صفحه 
     از  0
  • [صفحه قبل]
  • [صفحه بعد]
  • [نمایش تمام صفحه]
  • [بستن]
 
Modern power electronics and AC drives
Bose, Bimal K.

اطلاعات کتابشناختی

Modern power electronics and AC drives
Author :   Bose, Bimal K.
Publisher :   Prentice Hall,
Pub. Year  :   2002
Subjects :   Electric motors, Alternating current -- Automatic control. Electric driving. Power...
Call Number :   ‭TK 2781 .B67 2002

جستجو در محتوا

ترتيب

فهرست مطالب

  • Preface (19)
  • List of Principal Symbols (21)
  • Chapter 1 Power Semiconductors Devices (25)
    • 1.2 Diodes (26)
    • 1.1 Introduction (25)
    • 1.3 Thyristors (28)
      • 1.3.1 Volt Ampere Characteristics (29)
      • 1.3.2 Switching Characteristics (30)
      • 1.3.3 Power Loss and Thermal Impedance (30)
      • 1.3.4 Current Rating (32)
    • 1.4 Triacs (32)
    • 1.5 Gate Turn-Off Thyristors (GTOs) (34)
      • 1.5.1 Switching Characteristics (35)
      • 1.5.2 Regenerative Snubbers (38)
    • 1.6 Bipolar Power or Junction Transistors (BPTs or BJTs) (38)
    • 1.7 Power MOSFETs (41)
      • 1.7.1 V-I Characteristics (41)
      • 1.7.2 Safe Operating Area (SOA) (41)
    • 1.8 Static Induction Transistors (SITs) (43)
    • 1.9 Insulated Gate Bipolar Transistors (IGBTs) (44)
      • 1.9.1 Switching Cgaracteristics and Thermal Impedance (46)
    • 1.10 MOS-Controlled Thyristors (MCTs) (48)
    • 1.11 Integrated Gate-Commutated Thyristors (IGCTs) (49)
    • 1.12 Large Band-Gap Materials for Devices (50)
    • 1.13 Power Integrated Circuits (PICs) (50)
    • 1.14 Summary (51)
  • Chapter 2 AC Machines for Drivers (53)
    • 2.1 Introduction (53)
    • 2.2 Induction Machines (54)
      • 2.2.1 Rotating Magnetic Field (54)
      • 2.2.2 Torque Production (57)
      • 2.2.3 Equivalent Circuit (59)
      • 2.2.4 Torque-Speed Curve (63)
      • 2.2.5 NEMA Classification of Machines (66)
      • 2.2.6 Variable-Voltage, Constant-Frequency Operation (66)
      • 2.2.7 Variable-Frequency Operation (67)
      • 2.2.8 Constant Volts/Hz Operation (68)
      • 2.2.9 Drive Operating Regions (70)
      • 2.2.10 Variable Stator Current Operation (71)
      • 2.2.11 The Effect of Harmonics (73)
        • 2.2.11.1 Harmonic Heating (73)
        • 2.2.11.2 Machine Parameter Variation (77)
        • 2.2.11.3 Torque Pulsation (77)
      • 2.2.12 Dynamic d-q Model (80)
        • 2.2.12.1 Axes Transformation (81)
        • 2.2.12.2 Synchronously Rotating Reference Frame - Dynamic Model (Kron Equation) (87)
        • 2.2.12.3 Stationary Frame - Dynamic Model (Stanley Equation) (91)
        • 2.2.12.4 Dynamic Model State-Space Equations (94)
    • 2.3 Synchronous Machines (98)
      • 2.3.1 Wound Field Machine (98)
        • 2.3.1.1 Equivalent Circuit (100)
        • 2.3.1.2 Developed Torque (103)
        • 2.3.1.3 Salient Pole Machine Characteristics (104)
        • 2.3.1.4 Dynamic d-q Machine Model (Park Model) (107)
      • 2.3.2 Synchronous Reluctance Machine (110)
      • 2.3.3 Permanent Magnet (PM) Machine (110)
        • 2.3.3.1 Permanent Magnet Materials (110)
        • 2.3.3.2 Sinusoidal Surface Magnet Machine (SPM) (113)
        • 2.3.3.3 Sinusoidal Interior Magnet Machine (IPM) (113)
        • 2.3.3.4 Trapezoidal Surface Magnet Machine (117)
    • 2.4 Variable Reluctance Machine (VRM) (118)
    • 2.5 Summary (120)
  • Chapter 3 Diodes and Phase-Controlled Converters (123)
    • 3.1 Introduction (123)
    • 3.2 Diode Rectifiers (124)
      • 3.2.1 Single-Phase Bridge - R, RL Load (124)
      • 3.2.2 Effect of Source Inductance (127)
      • 3.2.3 Single-Phase Bridge - RL, CEMF Load (128)
      • 3.2.4 Single-Phase Bridge - CR Load (129)
      • 3.2.5 Distortion, Displacement, and Power Factors (131)
      • 3.2.6 Distortion Factor (DF) (132)
      • 3.2.7 Displacement Power Factor (DPF) (132)
      • 3.2.8 Power Factor (PF) (133)
      • 3.2.9 Three-Phase Full Bridge - RL Load (133)
      • 3.2.10 Three-Phase Bridge - CR Load (136)
    • 3.3 Thristor Converters (136)
      • 3.3.1 Single-Phase Bridge - RL, CEMF Load (136)
      • 3.3.2 Discontinuous Conduction (142)
      • 3.3.3 Three-Phase Converter - RL, CEMF Load (146)
      • 3.3.4 Three-Phase, Half-Wave Converter (146)
      • 3.3.5 Analysis for Line Leakage Inductance (Lc) (148)
      • 3.3.6 Three-Phase Bridge Converter (152)
      • 3.3.7 Discontinuous Conduction (156)
      • 3.3.8 Three-Phase Dual Converter (160)
      • 3.3.9 Six-Pulse, Center-Tap Converter (160)
      • 3.3.10 12-Pulse Converter (161)
      • 3.3.11 Concurrent and Sequential Control of bridge Converters (164)
    • 3.4 Converter Control (165)
      • 3.4.1 Linear Firing Angle Control (166)
      • 3.4.2 Cosine Wave Crossing Control (166)
      • 3.4.3 Phase-Locked Oscillator Principle (169)
    • 3.5 EMI and Line Power Quality Problems (172)
      • 3.5.1 EMI Problems (172)
      • 3.5.2 Line Harmonic Problems (173)
    • 3.6 Summary (175)
  • Chapter 4 Cycloconverters (177)
    • 4.1 Introduction (177)
    • 4.2 Phase-Controlled Cycloconverters (178)
      • 4.2.1 Operation Principles (178)
      • 4.2.2 A Three-Phase Dual Converter as Cycloconverter (180)
      • 4.2.3 Cycloconverter Circuits (182)
        • 4.2.3.1 Three-Phase, Half-Wave Cycloconverter (182)
        • 4.2.3.2 Three-Phase Bridge Cycloconverter (185)
          • 4.2.3.2.1 Modulation Factor (185)
      • 4.2.4 Circulating vs. Non-Circulating Current Mode (186)
        • 4.2.4.1 Circulating Current Mode (186)
        • 4.2.4.2 Blocking Mode (189)
      • 4.2.5 Load an Line Harmonics (191)
        • 4.2.5.1 Load Voltage Harmonics (191)
        • 4.2.5.2 Line Current Harmonics (195)
      • 4.2.6 Line Displacement Power Factor (195)
        • 4.2.6.1 Theoretical Derivation of Line DPF (197)
      • 4.2.7 Control of Cycloconverter (201)
      • 4.2.8 DPF Improvement Methods (204)
        • 4.2.8.1 Square-Wave Operation (204)
        • 4.2.8.2 Asymmetrical Firing Angle Control (204)
        • 4.2.8.3 Circulating Current Control (207)
    • 4.3 Matrix Converters (209)
    • 4.4 High-Frequency Cycloconverters (210)
      • 4.4.1 High-Frequency, Phase-Controlled Cycloconverter (211)
      • 4.4.2 High-Frequency, Integral-Pulse Cycloconverter (211)
        • 4.4.2.1 Sinusoidal Supply (211)
        • 4.4.2.2 Quasi-Square-Wave Supply (212)
    • 4.5 Summary (213)
  • Chapter 5 Voltage-Fed Converters (215)
    • 5.1 Introduction (215)
    • 5.2 Single-Phase Inverters (216)
      • 5.2.1 Half-Bridge and Center-Tapped Inverters (216)
      • 5.2.2 Full, or H-Bridge, Inverter (217)
        • 5.2.2.1 Phase-Shift Voltage Control (219)
    • 5.3 Three-Phase Bridge Inverters (221)
      • 5.3.1 Square-Wave, or Six-Step, Operation (221)
      • 5.3.2 Motoring and Regenerative Modes (225)
      • 5.3.3 Input Ripple (226)
      • 5.3.4 Device Voltage and Current Ratings (227)
      • 5.3.5 Phase-Shift Voltage Control (227)
      • 5.3.6 Voltage and Frequency Control (229)
    • 5.4 Multi-Stepped Inverters (230)
      • 5.4.1 12-Step Inverter (231)
      • 5.4.2 18-Step Inverter by Phase-Shift Control (232)
    • 5.5 Pulse Width Modulation Techniques (234)
      • 5.5.1 PWM Principle (234)
        • 5.5.1.1 PWM Classification (234)
          • 5.5.1.1.1 Sinusoidal PWM (235)
          • 5.5.1.1.2 Selected Harmonic Elimination PWM (242)
          • 5.5.1.1.3 Minimum Ripple Current PWM (247)
          • 5.5.1.1.4 Space-Vector PWM (248)
          • 5.5.1.1.5 Sinusoidal PWM with Instantaneous Current Control (260)
          • 5.5.1.1.6 Hysteresis-Band Current Control PWM (260)
          • 5.5.1.1.7 Sigma-Delta Modulation (263)
    • 5.6 Three-Level Inverters (264)
      • 5.6.1 Control of Neutral Point Voltage (267)
    • 5.7 Hard Switching Effects (269)
    • 5.8 Resonant Inverters (271)
    • 5.9 Soft-Switched Inverters (273)
      • 5.9.1 Soft Switching Principle (273)
        • 5.9.1.1 Inverter Circuits (273)
    • 5.10 Dynamic and Regenerative Drive Braking (277)
      • 5.10.1 Dynamic Braking (277)
      • 5.10.2 Regenerative Braking (277)
    • 5.11 PWM Rectifiers (279)
      • 5.11.1 Diode Rectifier with Boost Chopper (279)
        • 5.11.1.1 Single-Phase (279)
        • 5.11.1.2 Three-Phase (281)
      • 5.11.2 PWM Converter as Line-Side Rectifier (282)
        • 5.11.2.1 Single-Phase (282)
        • 5.11.2.2 Three-Phase (282)
    • 5.12 Static VAR Compensators and Active Harmonic Filters (285)
    • 5.13 Introduction to Simulation - MATLAB/SIMULINK (288)
    • 5.14 Summary (291)
  • Chapter 6 Current-Fed Converters (295)
    • 6.1 Introduction (295)
    • 6.2 General Operation of Six-Step Thyristor Inverter (295)
      • 6.2.1 Inverter Opereation Modes (298)
        • 6.2.1.1 Mode 1: Load-Commutated Rectifier (298)
        • 6.2.1.2 Mode 2: Load-Commutated Inverter (300)
        • 6.2.1.3 Mode 3: Force-Commutated Inverter (300)
        • 6.2.1.4 Mode 4: Force-Commutated Rectifier (300)
    • 6.3 Load-Commutated Inverters (301)
      • 6.3.1 Single-Phase Resonant Inverter (301)
        • 6.3.1.1 Circuit Analysis (302)
      • 6.3.2 Three-Phase Inverter (305)
        • 6.3.2.1 Lagging Power Factor Load (305)
        • 6.3.2.2 Over-Excited Synchronous Machine Load (306)
        • 6.3.2.3 Synchronous Motor Starting (307)
    • 6.4 Force-Commutated Inverters (309)
      • 6.4.1 Auto-Sequential Current-Fed Inverter (ASCI) (309)
    • 6.5 Harmonic Heating and Torque Pulsation (311)
    • 6.6 Multi-Stepped Inverters (313)
    • 6.7 Inverters with Self-Commutated Devices (314)
      • 6.7.1 Six-Step Inverter (314)
        • 6.7.1.1 Load Harmonic Resonance Problem (317)
      • 6.7.2 PWM Inverters (318)
        • 6.7.2.1 Trapezoidal PWM (319)
        • 6.7.2.2 Selected Harmonic Elimination PWM (SHE-PWM) (320)
      • 6.7.3 Double-Sided PWM Converter System (323)
      • 6.7.4 PWM Rectifier Applications (326)
        • 6.7.4.1 Static VAR Compensator/Active Filter (326)
        • 6.7.4.2 Superconducting Magnet Energy Storage (SMES) (327)
        • 6.7.4.3 DC Motor Speed Control (327)
    • 6.8 Current-Fed vs. Voltage-Fed Converters (327)
    • 6.9 Summary (329)
  • Chapter 7 Induction Motor Slip-Power Recovery Drives (331)
    • 7.1 Introduction (331)
    • 7.2 Doubly-Fed Machine Speed Control by Rotor Rheostat (332)
    • 7.3 Static Kramer Drive (332)
      • 7.3.1 Phasor Diagram (337)
      • 7.3.2 AC Equivalent Circuit (340)
      • 7.3.3 Torque Expression (343)
      • 7.3.4 Harmonics (345)
      • 7.3.5 Speed Control of a Kramer Drive (346)
      • 7.3.6 Power Factor Improvement (346)
    • 7.4 Static Scherius Drive (348)
      • 7.4.1 Modef of Operation (350)
      • 7.4.2 Modified Scherbius Drive for VSCF Power Generation (352)
    • 7.5 Summary (355)
  • Untitled (338)
  • Chapter 8 Control and Estimation of Induction Motor Drives (357)
    • 8.1 Introduction (357)
    • 8.2 Induction Motor Control with Small Signal Model (358)
      • 8.2.1 Small-Signal Model (359)
    • 8.3 Scalar Control (362)
      • 8.3.1 Voltage-Fed Inverter Control (363)
        • 8.3.1.1 Open Loop Volts/Hz Control (363)
        • 8.3.1.2 Energy Conservation Effect by Variable Frequency Drive (366)
        • 8.3.1.3 Speed Control with Slip Regulation (366)
        • 8.3.1.4 Speed Control with Torque and Flux Control (369)
        • 8.3.1.5 Current-Controlled Voltage-Fed Inverter Drive (370)
        • 8.3.1.6 Traction Drives with Parallel Machines (372)
      • 8.3.2 Current-Fed Inverter Control (374)
        • 8.3.2.1 Independent Current and Frequency Control (374)
        • 8.3.2.2 Speed and Flux Control in Current-Fed Inverter Drive (375)
        • 8.2.2.3 Volts/Hz Control of Current-Fed Inverter Drive (376)
      • 8.3.3 Efficiency Optimization Control by Flux Program (376)
    • 8.4 Vector or Field-Oriented Control (380)
      • 8.4.1 DC Drive Analogy (380)
      • 8.4.2 Equivalent Circuit and Phasor Diagram (382)
      • 8.4.3 Principles of Vector Control (383)
      • 8.4.4 Direct or Feedback Vector Control (384)
      • 8.4.5 Flux Vector Estimation (387)
        • 8.4.5.1 Voltage Model (387)
        • 8.4.5.2 Current Model (390)
      • 8.4.6 Indirect or Feedforward Vector Control (392)
        • 8.4.6.1 Indirect Vector Control Slip Gain (Ks) Tuning (399)
      • 8.4.7 Vector Control of Line-Side PWM Rectifier (402)
      • 8.4.8 Stator Flux-Oriented Vector Control (405)
      • 8.4.9 Vector Control of Current-Fed Inverter Drive (408)
      • 8.4.10 Vector Control of Cycloconverter Drive (409)
    • 8.5 Sensorless Vector Control (412)
      • 8.5.1 Speed Estimation Methods (412)
        • 8.5.1.1 Slip Calculation (412)
        • 8.5.1.2 Direct Synthesis from State Equations (413)
        • 8.5.1.3 Model Referencing Adaptive System (MRAS) (414)
        • 8.5.1.4 Speed Adaptive Flux Observer (Luenberger Observer) (416)
        • 8.5.1.5 Extended Kalman Filter (EKS) (420)
        • 8.5.1.6 Slot Harmonics (423)
        • 8.5.1.7 Injection of Auxiliary Signal on Salient Rotor (423)
      • 8.5.2 Direct Vector Control without Speed Signal (425)
        • 8.5.2.1 Programmable Cascaded Low-Pass Filter (PCLPF) Stator Flux Estimation (425)
        • 8.5.2.2 Drive Machine Start-up with Current Model Equations (428)
    • 8.6 Direct Torque and Flux Control (DTC) (432)
      • 8.6.1 Torque Expression with Stator and Rotor Fluxes (432)
      • 8.6.2 Control Strategy of DTC (434)
    • 8.7 Adaptive Control (437)
      • 8.7.1 Self-Tuning Control (438)
        • 8.7.1.1 Load Torque Disturbance (Tl) Compensation (439)
      • 8.7.2 Model Referencing Adaptive Control (MRAC) (440)
      • 8.7.3 Sliding Mode Control (443)
        • 8.7.3.1 Control Principle (443)
        • 8.7.3.2 Sliding Trajectory Control of a Vector Drive (448)
    • 8.8 Self-Commissioning of Drive (454)
    • 8.9 Summary (459)
  • Chapter 9 Control and Estimation of Synchronous Motor Drives (463)
    • 9.1 Introduction (463)
    • 9.2 Sinusoidal SPM Machine Drives (464)
      • 9.2.1 Open Loop Volts/Hertz Control (464)
      • 9.2.2 Self-Control Model (468)
      • 9.2.3 Absolute Position Encoder (470)
        • 9.2.3.1 Optical Encoder (470)
        • 9.2.3.2 Analog Resolver with Decoder (472)
      • 9.2.4 Vector Control (473)
        • 9.2.4.1 Field-Weakening Mode (475)
    • 9.3 Synchronous Reluctance Machine Drives (479)
      • 9.3.1 Current Vector Control of SyRM Drive (481)
        • 9.3.1.1 Constant d - Axis Current Control (482)
        • 9.3.1.2 Fast Torque Response Control (483)
        • 9.3.1.3 Maximum Torque/Ampere Control (487)
        • 9.3.1.4 Maximum Power Factor Control (487)
    • 9.4 Sinusoidal IPM Machine Drives (489)
      • 9.4.1 Current Vector Control with Maximum Torque/Ampere (489)
      • 9.4.2 Field-Weakening Control (492)
      • 9.4.3 Vector Control with Stator Flux Orientation (495)
        • 9.4.3.1 Feedback Signal Processing (501)
        • 9.4.3.2 Square-Wave (SW) Mode Field-Weakening Control (503)
        • 9.4.3.3 PWM - Square-Wave Sequencing (506)
    • 9.5 Trapezoidal SPM Machine Drives (507)
      • 9.5.1 Drive Operation with Inverter (507)
        • 9.5.1.1 Angle Switch-on Mode (509)
        • 9.5.1.2 PWM Voltage and Current Control Mode (510)
      • 9.5.2 Torque-Speed Curve (510)
      • 9.5.3 Machine Dynamic Model (513)
      • 9.5.4 Drive Control (514)
        • 9.5.4.1 Close Loop Speed Control in Feedback Mode (514)
        • 9.5.4.2 Close Loop Current Control in Freewheeling Mode (516)
      • 9.5.5 Torque Pulsation (517)
      • 9.5.6 Extended Speed Operation (518)
    • 9.6 Wound-Field Synchronous Machine Drives (519)
      • 9.6.1 Brush and Brushless dc Excitation (519)
      • 9.6.2 Load-Commutated Inverter (LCI) Drive (520)
        • 9.6.2.1 Control of LCI Drive with Constant Angle (522)
        • 9.6.2.2 Delay angle or Angle control (525)
        • 9.6.2.3 Control with Machine Terminal Voltage Signals (528)
        • 9.6.2.4 Phase-Locked Loop (PLL) Angle Control (530)
      • 9.6.3 Scalar Control of Cycloconverter Drive (531)
      • 9.6.4 Vector Control of Cycloconverter (534)
      • 9.6.5 Vector Control with Voltage-Fed Inverter (537)
    • 9.7 Sensorless Control (539)
      • 9.7.1 Trapezoidal SPM Machine (539)
        • 9.7.1.1 Terminal Voltage Sensing (539)
        • 9.7.1.2 Stator Third Harmonic Voltage Detection (543)
      • 9.7.2 Sinusoidal PM Machine (PMSM) (546)
        • 9.7.2.1 Terminal Voltage and Current Sensing (546)
        • 9.7.2.2 Inductance Variation (sailency) Effect (548)
        • 9.7.2.3 Extended Kalman Filter (EKF) (550)
    • 9.8 Switched Reluctance Motor (SRM) Drives (553)
    • 9.9 Summary (556)
  • Chapter 10 Expert System Principles and Applications (559)
    • 10.1 Introduction (559)
    • 10.2 Expert System Principles (560)
      • 10.2.1 Knowledge Base (561)
        • 10.2.1.1 Frame Structure (563)
        • 10.2.1.2 Meta-Knowledge (564)
        • 10.2.1.3 ES Language (564)
      • 10.2.2 Inference Engine (565)
      • 10.2.3 User Interface (565)
    • 10.3 Expert System Shell (567)
      • 10.3.1 Shell Features (567)
      • 10.3.2 External Interface (567)
      • 10.3.3 Program Development Steps (568)
    • 10.4 Design Methodology (570)
    • 10.5 Application (570)
      • 10.5.1 P-I Tuning of a Drive (571)
      • 10.5.2 Fault Diagnostics (571)
      • 10.5.3 Selection of Commercial ac Drive Product (573)
      • 10.5.4 Configuration Selection, Design, and Simulation of a Drive System (573)
        • 10.5.4.1 Configuration Selection (574)
        • 10.5.4.2 Motor Ratings Design (574)
        • 10.5.4.3 Converter Design (576)
        • 10.5.4.4 Control Design and Simulation Study (578)
    • 10.6 Glossary (579)
    • 10.7 Summary (580)
  • Chapter 11 Fuzzy Logic Principles and Applications (583)
    • 11.1 Introduction (583)
    • 11.2 Fuzzy Sets (584)
      • 11.2.1 Membership Functions (585)
      • 11.2.2 Operations on Fuzzy Sets (588)
    • 11.3 Fuzzy System (590)
      • 11.3.1 Implication Methods (593)
        • 11.3.1.1 Mamdani Type (593)
        • 11.3.1.2 Lusing Larson Type (594)
        • 11.3.1.3 Sugeno Type (595)
      • 11.3.2 Defuzzification Methods (597)
        • 11.3.2.1 Center of Area (COA) Method (597)
        • 11.3.2.2 Height Method (599)
        • 11.3.2.3 Mean of Maxima (MOM) Method (599)
        • 11.3.2.4 Sugeno Method (600)
    • 11.4 Fuzzy Control (600)
      • 11.4.1 Why Fuzzy Control (600)
      • 11.4.2 Historical Perspective (600)
      • 11.4.3 Control Principle (601)
      • 11.4.4 Control Implementation (605)
    • 11.5 General design Methotology (605)
    • 11.6 Applications (606)
      • 11.6.1 Induction Motor Speed Control (606)
      • 11.6.2 Flux Programming Efficiency Improvement of Induction Motor Drive (609)
        • 11.6.2.1 Pulsating Torque Compensation (613)
      • 11.6.3 Wind Generation System (615)
        • 11.6.3.1 Wind Turbine Characteristics (616)
        • 11.6.3.2 System Description (616)
        • 11.6.3.3 Fuzzy Control (617)
      • 11.6.4 Slip Gain Tuning of Indirect Vector Control (621)
        • 11.6.4.1 Derivation of Q and v (622)
      • 11.6.5 Stator Resistance Rs Estimation (626)
      • 11.6.6 Estimation of Distorted Waves (630)
        • 11.6.6.2 Sugeno Method (633)
        • 11.6.6.1 Mandami Method (632)
    • 11.7 Fuzzy Logic Toolbox (633)
      • 11.7.1 FIS Editor (635)
      • 11.7.2 Membership Function Editor (635)
      • 11.7.3 Rule Editor (636)
      • 11.7.4 Rule Viewer (636)
      • 11.7.5 Surface Viewer (637)
      • 11.7.6 Demo Program for Synchronous Current Control (637)
    • 11.8 Glossary (643)
    • 11.9 Summary (646)
  • Chapter 12 Neural Network Principles and Applications (649)
    • 12.1 Introduction (649)
    • 12.2 The Structure of a Neuron (650)
      • 12.2.1 The Concept of a Biological Neuron (650)
      • 12.2.2 Artificial Neuron (651)
        • 12.2.2.1 Activation Functions of a Neuron (652)
    • 12.3 Artificial Neural Network (653)
      • 12.3.1 Application: Y = Asin X (656)
      • 12.3.2 Training of Feedforward Neural Network (656)
        • 12.3.2.1 Learning Methods (658)
        • 12.3.2.2 Alphabet Character Recognition by an ANN (658)
      • 12.3.3 Back Propagation Training (661)
      • 12.3.4 Back propagation Algorithm for Three-Layer Network (661)
        • 12.3.4.1 Weight Calculation for Output Layer Neurons (661)
        • 12.3.4.2 Weight Calculation for Hidden Layer Neurons (665)
      • 12.3.5 On-Line Training (667)
    • 12.4 Other Networks (668)
      • 12.4.1 Radial Basis Function Network (668)
      • 12.4.2 Kohonen's Self-Organizing Feature Map Network (669)
      • 12.4.3 Recurrent Neural Network for Dynamic System (670)
        • 12.4.3.1 Training an RNN by EKF Algorithm (671)
    • 12.5 Neural Network in Identification and Control (674)
      • 12.5.1 Time-Delayed Neural Network (674)
      • 12.5.2 Dynamic System Models (674)
      • 12.5.3 ANN Identification of Dynamic Models (676)
      • 12.5.4 Inverse Dynamics Model (678)
      • 12.5.5 Neural Network-Based Control (679)
    • 12.6 General Design Methodology (681)
    • 12.7 Applications (682)
      • 12.7.1 PWM Controller (682)
        • 12.7.1.1 Selected Harmonic Elimination (SHE) PWM (682)
        • 12.7.1.2 Instantaneous Current Control PWM (683)
        • 12.7.1.3 Space Vector PWM (684)
      • 12.7.2 Vector-Controlled Drive Feedback Signal Estimation (691)
      • 12.7.3 Estimation of Distorted Waves (694)
      • 12.7.4 Model Identification and Adaptive Drive Control (695)
      • 12.7.5 Speed Estimation by RNN (699)
      • 12.7.6 Adaptive Flux Estimation by RNN (700)
    • 12.8 Neuro-Fuzzy Systems (702)
      • 12.8.1 Adaptive Network-Based Fuzzy Inference System (ANFIS) (702)
    • 12.9 Demo Program With Neural Network Toolbox (706)
      • 12.9.1 Introduction to Neural Network Toolbox (706)
      • 12.9.2 Demo Program (707)
    • 12.10 Glossary (708)
    • 12.11 Summary (713)
  • Index (715)
Loading...